二矩阵求逆矩阵:若ad-bc≠哦,则:
设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩B,使得: AB=BA=E。 则我们称B是A的逆矩阵,而A则被称为可逆矩阵。其中,E为单位矩阵。
性质:
逆矩阵的唯一性,若矩阵A是可逆的,则A的逆矩阵是唯一的,并记作A的逆矩阵为A-1。
n阶方阵A可逆的充分必要条件是r(A)=m。对n阶方阵A,若r(A)=n,则称A为满秩矩阵或非奇异矩阵。
任何一个满秩矩阵都能通过有限次初等行变换化为单位矩阵,满秩矩阵A的逆矩阵A可以表示成有限个初等矩阵的乘积。