正交矩阵特征值是什么?

 我来答
私玥Bw
高能答主

2022-02-10 · 致力于成为全知道最会答题的人
知道小有建树答主
回答量:800
采纳率:0%
帮助的人:15万
展开全部

正交矩阵的特征值一定是1或-1。

(λα,λα) = (Aα,Aα) = (Aα)^T(Aα) = α^TA^TAα

= α^Tα = (α,α)

所以有 λ^2(α,α) = (α,α)

又因为 α≠0, 所以 (α,α)>0

所以 λ^2 = 1

所以 λ = ±1

即正交矩阵的特征值只能是1或-1。

注意

正交矩阵的最基本置换是换位(transposition),通过交换单位矩阵的两行得到。任何n×n置换矩阵都可以构造为最多n1次换位的积。构造自非零向量v的Householder反射,这里的分子是对称矩阵,而分母是v的平方量的一个数。

这是在垂直于v的超平面上的反射(取负平行于v任何向量分量)。如果v是单位向量,则Q=I2vv就足够了。Householder反射典型的用于同时置零一列的较低部分。任何n×n正交矩阵都可以构造为最多n次这种反射的积。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式