2的x次方的原函数是什么?
1个回答
展开全部
2的x次方的原函数是2^x /ln2 +C。
解题过程:令y=2^x,那么lny=ln(2^x),所以:y=e^ln(2^x)=2^x。
得:∫2^xdx=∫e^(ln(2^x))dx
=1/ln2*∫e^(x*ln2)d(x*ln2)
=2^x/ln2+C。
即2^x的原函数是2^x /ln2 +C。
1、已知函数f(x)是一个定义在某区间的函数,如果存在可导函数F(x),使得在该区间内的任一点都有dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。例如:sinx是cosx的原函数。
2、原函数存在定理: 若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”。
3、 函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数。 故若函数f(x)有原函数,那么其原函数为无穷多个。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询