1/1+2,1/1+2+3,1/1+2+3+4,...,1/1+2+3+...+n的和
1个回答
展开全部
1+2+3+……+n=n(n+1)/2
1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+,...,+1/(1+2+3+...+n)
=2/2×3+2/3×4+2/4×5+……+2/n(n+1)
=2(1/2×3+1/3×4+1/4×5+……+1/n(n+1) )
=2(1-1/2+1/2-1/3+1/3-1/4+……+1/n-1/(n+1) )
=2/(1-1/(n+1) )
=2n/(n+1)
1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+,...,+1/(1+2+3+...+n)
=2/2×3+2/3×4+2/4×5+……+2/n(n+1)
=2(1/2×3+1/3×4+1/4×5+……+1/n(n+1) )
=2(1-1/2+1/2-1/3+1/3-1/4+……+1/n-1/(n+1) )
=2/(1-1/(n+1) )
=2n/(n+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询