层次分析:权重到判断矩阵的逆过程

 我来答
黑科技1718
2022-06-20 · TA获得超过5891个赞
知道小有建树答主
回答量:433
采纳率:97%
帮助的人:82.4万
展开全部
原帖地址( http://blog.sina.com.cn/s/blog_c9d4e1380102xiof.html ),作者也是本人。

在对多个层次指标对重要性进行主观判断时,往往会面临跨层不可比的问题,层次分析正是为了解决这问题而诞生的方法。随着计算工具的完善,层次分析的实现变得越来越简单,但是层次分析为什么会生效?如果已经有一个理论上的权重,能否根据该权重逆向生成判断矩阵?本文将围绕上述两个基本问题展开介绍。

层次分析的一般流程如下:在单层权重计算的过程中,对于一个待决策层(假设有n个指标),需要先构建判断矩阵,构建判断矩阵的方法可以参考这一篇博文( https://www.cnblogs.com/BlueMountain-HaggenDazs/p/4278049.html );之后需要检验该判断矩阵是否可以通过一致性检验。

在很多实操的时候,一致性检验在某些时候会很难通过。实际上,一致性检验是层次分析生效的保证。换句话说,一致性检验是判断矩阵的一个质量控制手段,一个逻辑无法自洽的判断矩阵,是无法通过一致性检验的。有一定线性代数基础的人都知道,方阵的秩是的极大无关组的向量个数。在判断矩阵中,每一行都代表着当前指标与其余指标的相对重要性,当该判断矩阵完全自洽的时候,所有的行应该是成比例的,换言之,判断矩阵的秩应该为1。此时,对称方阵秩为1,非零特征值只有1个,因此为矩阵的迹(也就是对角线的和),为n。所以在一致性检验无法通过的时候,只需要检查是不是出现了相对重要性矛盾的地方,进行调整即可。

那么,如果给定一个权重,是否可以逆向生成判断矩阵呢?当然是可以的。层次分析中输出到权向量,实际上就是特征向量。将特征向量作为权向量的依据是,每一个特征向量都是矩阵空间中的一个向量,而由于判断矩阵的空间理论上只有一个维度,因此只能有一个线性无关的特征向量,那么则个特征向量自然也就等价于判断矩阵的每一行,也就自然是我们要求的权向量。所以说,给定一个权向量,返回判断矩阵,相当于将该权向量重复n列,形成一个方阵,之后按照同乘或者同除的方法,将这个方阵变成对角线为1,其余元素均近似为1-9整数或者整数分之一的数值即可。以下是我常用来逆向生成判断矩阵的R语言code:
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式