对数函数的导数是什么?
对数函数的导数是(logax)'=1/xlna,(lnx)'=1/x。如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。底数要>0且≠1,真数>0。底数一样,真数越大,函数值越大。(a>1时)底数一样,真数越小,函数值越大。
对数函数求导公式:(Inx)' = 1/x(ln为自然对数);(logax)' =x^(-1) /lna(a>0且a不等于1)。
当a>0且a≠1时,M>0,N>0,那么:(1)log(a)(MN)=log(a)(M)+log(a)(N)。
(2)log(a)(M/N)=log(a)(M)-log(a)(N)。
(3)log(a)(M^n)=nlog(a)(M)(n∈R)。
(6)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)。
设a=n^x则a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a)。
log(a)a^b=b证明:设a^log(a)N=X,log(a)N=log(a)X,N=X。
对数函数
一般地,对数函数是以幂(真数)为自变量,指数为因变量,底数为常量的函数。
其中对数的定义:如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。
其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。
2023-08-25 广告