微分方程XY'-YlnY=0的通解为?
1个回答
展开全部
xy'-ylny=0
dy/dx=(ylny)/x
dy/(ylny)=dx/x
两边积分
ln(lny)=lnx+lnC
lny=Cx
y=e^(Cx)
(1)取常数为lnC是为了使最后的结果更简洁
(2)两边积分时是ln(lny)与lnx,不需要写成ln|lny|,ln|x|
dy/dx=(ylny)/x
dy/(ylny)=dx/x
两边积分
ln(lny)=lnx+lnC
lny=Cx
y=e^(Cx)
(1)取常数为lnC是为了使最后的结果更简洁
(2)两边积分时是ln(lny)与lnx,不需要写成ln|lny|,ln|x|
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
厦门鲎试剂生物科技股份有限公司
2023-08-01 广告
2023-08-01 广告
计算过程如下:首先,计算4个数值的和:∑Xs = 0.3 + 0.2 + 0.4 + 0.1 = 1然后,计算 lg-1(∑Xs/4):lg-1(∑Xs/4) = lg-1(1/4) = -1其中,lg表示以10为底的对数,即 log10。...
点击进入详情页
本回答由厦门鲎试剂生物科技股份有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询