怎样用stata做两阶段回归?2SLS?
用命令ivregress 2sls y x1 x2, robust。y2是内生变量,z1、z2是工具变量。
不过建议使用ivregress2。先安装:ssc install ivregress2。
Stata操作:工具变量法的难点在于找到一个合适的工具变量并说明其合理性,Stata操作其实相当简单,只需一行命令就可以搞定,我们通常使用的工具变量法的Stata命令主要就是ivregress命令和ivreg2命令。
stata如何进行最小二乘法回归方法步骤?
一般做2sls,使用语句ivreg y (x1=z) x2 x3……xn。假定工具变量为z,控制变量有n-1个,就使用这个就好了。如果你非要自己编程序的话,首先reg x1 z x2……xn。
然后把X1的拟合值predict出来(假定为x11),在做第二阶段的回归。 reg y x11 x2……xn; 这样得到的结果就是两阶段的回归结果,但是方差是有问题的。最好使用ivreg,如果还不会用的话,直接help ivreg。
ivregress命令
ivregress命令是Stata自带的命令,支持两阶段最小二乘(2SLS)、广义矩估计(GMM)和有限信息最大似然估计(LIML)三种工具变量估计方法,我们最常使用的是两阶段最小二乘法(2SLS),因为2SLS最能体现工具变量的实质,并且在球形扰动项的情况下,2SLS是最有效率的工具变量法。
顾名思义,两阶段最小二乘法(2SLS)需要做两个回归:
(1)第一阶段回归:用内生解释变量对工具变量和控制变量回归,得到拟合值。
(2)第二阶段回归:用被解释变量对第一阶段回归的拟合值和控制变量进行回归。
如果要使用2SLS方法,我们只需在ivregress后面加上2sls即可,然后将内生解释变量lnjinshipop和工具变量bprvdist放在一个小括号中,用=号连接。选项first表示报告第一阶段回归结果,选项cluster()表示使用聚类稳健的标准误。