e的lnx次方等于多少?
1个回答
展开全部
e的lnx次方等于等于x。
首先ln是以e为底的自然对数,对数和指数正好可以相抵。将其写为e^(lnx)=e^(loge(x))=x。inx是以e为底x的对数,要弄清楚e是什么,inx是什么,x的取值范围是什么。我们可以从简单的推向复杂:比如10^2=100。
反过来:
log100=2。我们需要弄清楚的是各个变量的取值范围。
次方最基本的定义是:
设a为某数,n为正整数,a的n次方表示为aⁿ,表示n个a连乘所得之结果,如2⁴=2×2×2×2=16。次方的定义还可以扩展到0次方、负数次方、小数次方、无理数次方甚至是虚数次方。
在电脑上输入数学公式时,因为不便于输入乘方,符号“^”也经常被用来表示次方。例如2的5次方通常被表示为2^5。
当m为正整数时,n^m指该式意义为m个n相乘。当m为小数时,m可以写成a/b(其中a、b为整数),n^m表示n^a再开b次根号。当m为虚数时,则需要利用欧拉公式eiθ =cosθ+isinθ,再利用对数性质求解。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询