若lim [sin6x+xf(x)]/x^3=0,则lim [6+f(x)]/x^2是多少?(x是趋近0) 可答案是36 我来答 1个回答 #热议# 什么是淋病?哪些行为会感染淋病? 黑科技1718 2022-07-10 · TA获得超过5897个赞 知道小有建树答主 回答量:433 采纳率:97% 帮助的人:82.6万 我也去答题访问个人页 关注 展开全部 答:(x→0)lim[sin6x+xf(x)]/x^3=0属于0-0型,可以应用洛必答法则:(x→0)lim[6cos6x+f(x)+xf'(x)]/(3x^2)=0(x→0)lim[-36sin6x+f'(x)+f'(x)+xf''(x)]/(6x)=0(x→0)lim[-216cos6x+2f''(x)+f''(x)+xf'''(x)]/6=0所以,x... 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 为你推荐: