n阶导数是什么?

 我来答
小不点聊生活
高能答主

2021-12-10 · 小不点聊生活,领悟生活。
小不点聊生活
采纳数:148 获赞数:13506

向TA提问 私信TA
展开全部

二阶及二阶以上的导数统称为高阶导数

所谓n阶导数,其实是指对函数进行n次求导,就求函数的高阶导数中的n阶导数。关于n阶导数的常见公式可以分成两类:一类是常见导数,也就是初等函数的特殊形式的n阶导数;另一类是复合函数,包括四则运算的n阶导数公式。

第一类常见的n阶导数公式,主要包括幂函数,对数函数,指数函数,三角函数常见形式的n阶导数公式。

1、幂函数常见形式是y=x^n,它的n阶导数是n!. n为正整数,而对任何比n小的正整数m,幂函数y=x^m的n阶导数都等于0,包括常数函数的一阶的导数等于0,所以n阶导数也等于0。

对特殊的幂函数y=1/x, 它的n阶导数是(-1)^n×(n!)/x^(n+1); y=1/(1+x)的n阶导数类似的为(-1)^n×(n!)/(1+x)^(n+1);而y=1/(1-x)的n阶导数就会有所变化,它的n阶导数是(n!)/(1-x)^(n+1)。

2、对数函数最常见的形式是y=lnx, 它的n阶导数正好是1/x的n-1阶导数,这是因为lnx的一阶导数就是1/x. 所以y=lnx的n阶导数是(-1)^(n-1)*((n-1)!)/x^n。

一般的对数函数形式是log_a x, 它的一阶导数是1/(xlna), 所以n阶导数是(-1)^(n-1)×((n-1)!)/(x^n×lna)。

3、指数函数最常见的形式是y=e^x,它的n阶导数是它本身。另一个形式e^(-x)就要考虑符号性质,它的n阶导数是(-1)^n×e^(-x)。

一般的指数函数是a^x,它的一阶导数是a^x*lna, 所以n阶函数是a^x×(lna)^n。

4、三角函数最常用的是sinx和cosx。sinx的一阶导数正好是cosx, 而cosx的一阶导数又正好是-sinx. 为了将它们统一起来,我们记sinx的一阶导数是sin(x+π/2), 因此它的n阶导数就是sin(x+nπ/2). 又记cosx的一阶导数为cos(x+π/2), 因此cosx的n阶导数就是cos(x+nπ/2)。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式