函数在某一点可导的条件是什么

 我来答
好游游5127
2020-11-24 · TA获得超过257个赞
知道答主
回答量:253
采纳率:100%
帮助的人:57.3万
展开全部

函数在某点可导的充要条件是函数在该点的左右极限都存在且相等。 也可以说是左导数和右导数都存在且相等。

左极限就是函数从一个点的左侧无限靠近该点时所取到的极限值,且误差可以小到我们任意指定的程度,只需要变量从坐标充分靠近于该点。

右极限就是函数从一个点的右侧无限靠近该点时所取到的极限值,且误差可以小到我们任意指定的程度,只需要变量从坐标充分靠近于该点。

扩展资料

所有多项式函数都是连续的。各类初等函数,如指数函数、对数函数、平方根函数与三角函数在它们的定义域上也是连续的函数。

绝对值函数也是连续的。

定义在非零实数上的倒数函数f= 1/x是连续的。但是如果函数的定义域扩张到全体实数,那么无论函数在零点取任何值,扩张后的函数都不是连续的。

非连续函数的一个例子是分段定义的函数。例如定义f为:f(x) = 1如果x> 0,f(x) = 0如果x≤ 0。取ε = 1/2,不存在x=0的δ-邻域使所有f(x)的值在f(0)的ε邻域内。直觉上我们可以将这种不连续点看做函数值的突然跳跃。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式