当x趋于0时,[((2+cosx)/3)^x-1]/x^3的极限 详细的步骤,大一初学
1个回答
展开全部
利用等价无穷小
(e^x)-1 ~ x,ln(1+x) ~ x,1-cosx ~ (x^2)/2 (x→0),
可得
lim(x→0){[(2+cosx)/3]^x-1}/x^3
= lim(x→0){e^{xln[(2+cosx)/3]}-1}/x^3
= lim(x→0){xln[(2+cosx)/3]}/x^3
= lim(x→0){ln[(2+cosx)/3]}/x^2
= lim(x→0){ln[1+(cosx-1)/3]}/x^2
= lim(x→0)[(cosx-1)/3]/x^2
= (-1/3)lim(x→0)[(1-cosx)/(x^2)]
= (-1/3)*(1/2)
= -1/6.
(e^x)-1 ~ x,ln(1+x) ~ x,1-cosx ~ (x^2)/2 (x→0),
可得
lim(x→0){[(2+cosx)/3]^x-1}/x^3
= lim(x→0){e^{xln[(2+cosx)/3]}-1}/x^3
= lim(x→0){xln[(2+cosx)/3]}/x^3
= lim(x→0){ln[(2+cosx)/3]}/x^2
= lim(x→0){ln[1+(cosx-1)/3]}/x^2
= lim(x→0)[(cosx-1)/3]/x^2
= (-1/3)lim(x→0)[(1-cosx)/(x^2)]
= (-1/3)*(1/2)
= -1/6.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询