高数中关于微分方程的通解问题,y"+y'=xe^x的通解,

 我来答
华源网络
2022-09-09 · TA获得超过5611个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:149万
展开全部
p=y'
p'+p=xe^x;
两侧同乘e^x;得到p'e^x+p(e^x)'=xe^2x;即
(pe^x)'=xe^2x
pe^x=(1/2)xe^2x-(1/4)e^2x+C1
p=(1/2)xe^x-(1/4)e^x+C1e^(-x)
y=(1/2)(xe^x-e^x)-(1/4)e^x+C1e^(-x)+C2
=(1/2)xe^x-(3/4)e^x+C1e^(-x)+C2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式