设A为m*n矩阵,则有()
展开全部
A,若m<n,则Ax=b有无穷多解。
由线性关系的定义求解。
解:A为m×n矩阵,∴A有m行n列,且方程组有n个未知数
Ax=0仅有零解⇔A的秩不小于方程组的未知数个数n
∵R(A)=n⇔A的列秩=n⇔A的列向量线性无关.
矩阵A有n列,∴A的列向量组线性无关
而A有m行,m可能小于n,此时行向量组线性无关,只能说R(A)=m,不能证明r(A)≥n。
因此,充分必要条件是A的列向量组线性无关。
扩展资料:
函数线性相关的定理
1、向量a1,a2,···,an(n_2)线性相关的充要条件是这n个向量中的一个为其余(n-1)个向量的线性组合。
3、两个向量a、b共线的充要条件是a、b线性相关。
4、三个向量a、b、c共面的充要条件是a、b、c线性相关。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询