黄金分割在现实生活中的应用

 我来答
承吉凌8580
2022-08-13 · TA获得超过1.1万个赞
知道小有建树答主
回答量:349
采纳率:0%
帮助的人:66.4万
展开全部
  有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点.大多数门窗的宽长之比也是0.618…;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:0.618……的两条半径的夹角.据研究发现,这种角度对植物通风和采光效果最佳.
  黄金分割被认为是建筑和艺术中最理想的比例.建筑师们对数字0.618…特别偏爱,无论是古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,都有与0.618…有关的数据.还有,在古希腊神庙的设计中就用到了黄金分割.人们还发现,一些名画、雕塑、摄影作品的主题,大多在画面的0.618…处.艺术家们认为弦乐器的琴马放在琴弦的0.618…处,能使琴声更加柔和甜美.
  数字0.618…更为数学家所关注,它的出现,不仅解决了许多数学难题(如:十等分、五等分圆周;求18度、36度角的正弦、余弦值等),而且还使优选法成为可能.优选法是一种求最优化问题的方法.如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—2000克之间,为了求得最恰当的加入量,需要在1000克与2000克这个区间中进行试验.通常是取区间的中点(即1500克)作试验.然后将试验结果分别与1000克和2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做试验,再比较端点,依次下去,直到取得最理想的结果.这种实验法称为对分法.但这种方法并不是最快的实验方法,如果将实验点取在区间的0.618处,那么实验的次数将大大减少.这种取区间的0.618处作为试验点的方法就是一维的优选法,也称0.618法.实践证明,对于一个因素的问题,用“0.618法”做16次试验就可以完成“对分法”做2500次试验所达到的效果.因此大画家达·芬奇把0.618…称为黄金数.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式