设f(x)在[a,b]上可微,且f(a)=f(b)=0,证明在(a,b)内存在一点z,使f'(z)=f(z)

 我来答
完满且闲雅灬抹香鲸P
2022-07-17 · TA获得超过1.8万个赞
知道小有建树答主
回答量:380
采纳率:0%
帮助的人:73万
展开全部
令g(x)=e^(-x)f(x)
则g(a)=g(b)=0
所以存在z,使得
g'(z)=e^(-z)f'(z)-e^(-z)f(z)=0
即 f'(z)-f(z)=0
f'(z)=f(z)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式