证明有限个n阶可逆矩阵乘积可逆,即A,B均为n阶可逆矩阵,则AB为可逆矩阵
1个回答
展开全部
AB*B^(-1)*A^(-1)=AEA^(-1)=AA^(-1)=E
(E为单位矩阵)
从而AB为可逆矩阵,逆矩阵为B^(-1)*A^(-1)
(E为单位矩阵)
从而AB为可逆矩阵,逆矩阵为B^(-1)*A^(-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |