求可分离变量微分方程的特解(4x-x^2)y'=y x=3时y=1

 我来答
华源网络
2022-07-20 · TA获得超过5599个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:148万
展开全部
(4x-x^2)dy/dx=y
dy/y=dx/[x(4-x)]=1/4(1/x+1/(4-x))dx
两边积分:ln|y|=1/4∫dx/x+1/4∫dx/(4-x)=1/4ln|x|-1/4ln|4-x|+C=1/4ln|x/(4-x)|+C
y=C*|x/(4-x)|^(1/4) (C≠0)
代入x=3,y=1:1=C*3^(1/4),C=1/3^(1/4)
所以y=|x/(3(4-x))|^(1/4)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
上海华然企业咨询
2024-10-28 广告
上海华然企业咨询有限公司专注于AI与数据合规咨询服务。我们的核心团队来自头部互联网企业、红圈律所和专业安全服务机构。凭借深刻的AI产品理解、上百个AI产品的合规咨询和算法备案经验,为客户提供专业的算法备案、AI安全评估、数据出境等合规服务,... 点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式