三角函数诱导公式
cos(π-α)=-cosα。这是诱导公式。
也可以利用和角公式:cos(α-β)=cosα·cosβ+sinα·sinβ,推导:
cos(π-α)=cosπcosα+sinπsinα=-cosα。
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
扩展资料:
和角公式:
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
积化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
任意角α与-α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
The induction formula for trigonometric functions is given by: 𝐹(𝑘)= 𝐹(𝑘−1) 𝐿𝑘 𝑐𝑜𝑠(𝑘𝜃) 𝑆𝑘 𝑠𝑖𝑛(𝑘𝜃). Here, F(k) is the trigonometric polynomial at the kth step, Lk is the coefficient for cos (kθ) and Sk is the coefficient for sin (kθ).