正方形的周长怎么计算?
正方形的周长:C=4a(a为正方形的边长)
正方形:S=a的平方 {正方形面积=边长×边长}
物体所占的平面图形的大小,叫做它们的面积。面积就是所占平面图形的大小,平方米,平方分米,平方厘米,是公认的面积单位,用字母可以表示为(m²,dm²,cm²)。
面积是表示平面中二维图形或形状或平面层的程度的数量。表面积是三维物体的二维表面上的模拟物。面积可以理解为具有给定厚度的材料的量,面积是形成形状的模型所必需的。
环绕有限面积的区域边缘的长度积分,叫做周长,也就是图形一周的长度。多边形的周长的长度也相等于图形所有边的和。
四条边都相等、四个角都是直角的四边形是正方形。
正方形的两组对边分别平行,四条边都相等;四个角都是90°;对角线互相垂直、平分且相等,每条对角线都平分一组对角。
有一组邻边相等且一个角是直角的平行四边形叫做正方形。有一组邻边相等的矩形叫做正方形,有一个角是90°的菱形叫做正方形。正方形是矩形的特殊形式,也是菱形的特殊形式。
扩展资料:
一、四边形的面积
在公元七世纪,Brahmagupta开发了一个公式,现在称为Brahmagupta的公式,用于其侧面的循环四边形(四边形刻在圆中)的面积。
1842年,德国数学家Carl Anton Bretschneider和Karl Georg Christian von Staudt独立地发现了一种称为Bretschneider公式的公式,用于任何四边形的区域。
二、面积和周长
如果以同一面积的三角形而言,以等边三角形的周界最短; 如果以同一面积的四边形而言,以正方形的周界是最短; 如果以同一面积的五边形而言,以正五边形的周界最短。
如果以同一面积的任意多边形而言,以正圆形的周界最短。周长只能用于二维图形(平面、曲面)上,三维图形(立体) 如柱体、锥体、球体等都不能以周界表示其边界大小,而是要用总表面面积。
参考资料: