怎样证明sin2A=2 sinA cosA+ cosA?

 我来答
教育小百科达人
2022-12-22 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:479万
展开全部

sin2a=sin(a+a)=sinacosa+cosasina=2cosαsinα

sin2α=2cosαsinα是正弦二倍角公式。

倍角半角公式:

sin ( 2α ) = 2sinα · cosα

sin ( 3α ) = 3sinα - 4sin & sup3 ; ( α ) = 4sinα · sin ( 60 + α ) sin ( 60 - α )

sin ( α / 2 ) = ± √( ( 1 - cosα ) / 2)

由泰勒级数得出:sinx = [ e ^ ( ix ) - e ^ ( - ix ) ] / ( 2i )

级数展开:sin x = x - x3 / 3! + x5 / 5! - ... ( - 1 ) k - 1 * x 2 k - 1 / ( 2k - 1 ) ! + ... ( - ∞ < x < ∞ )

导数:( sinx ) ' = cosx;( cosx ) ' = ﹣ sinx

和角公式:

sin ( α ± β ) = sinα · cosβ ± cosα · sinβ

sin ( α + β + γ ) = sinα · cosβ · cosγ + cosα · sinβ · cosγ + cosα · cosβ · sinγ - sinα · sinβ · sinγ

cos ( α ± β ) = cosα cosβ ∓ sinβ sinα

tan ( α ± β ) = ( tanα ± tanβ ) / ( 1 ∓ tanα tanβ )

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式