如何用积分计算旋转体的体积?

 我来答
帐号已注销
2023-01-16 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:166万
展开全部

用guldin公式,取dθ分成的小扇形,由三角形重心公式知其重心位置高2/3*r(θ)*sinθ,微元面积为ds=1/2*(r(θ))*(r(θ))d(θ);

用guldin公式重心轨迹长为2π*2/3*r(θ)*sinθ,所以微元的面积dV=2/3*r(θ)三次方*sinθ积分即可。

例如:

r = a(1 + cosθ),绕极轴旋转,求体积

0 <= θ <= π.

曲线上一点(θ,a(1 + cosθ)) 到极轴的距离的平方为

[a(1 + cosθ)sinθ]^2

当θ变化到(θ+dθ)时,点在曲线上变化的弧长为

a(1+cosθ)dθ

所以 ,旋转体的体积

= 关于θ的从0到π的定积分,被积函数为{π[a(1 + cosθ)sinθ]^2a(1+cosθ)}

= 关于θ的从0到π的定积分,被积函数为{a^3π(1 + cosθ)^3[sinθ]^2}

= 关于θ的从0到π的定积分,被积函数为{a^3π[1 + 3cosθ + 3(cosθ)^2 + (cosθ)^3 ](sinθ)^2}

关于θ的从0到π的定积分,被积函数为{a^3π(sinθ)^2}

= 2a^3π*关于θ的从0到π/2的定积分,被积函数为{[1-cos(2θ)]/2}

= 2a^3π[π/4]

= a^3π^2/2

关于θ的从0到π的定积分,被积函数为{a^3π[3cosθ](sinθ)^2}= 0

关于θ的从0到π的定积分,被积函数为{a^3π[3(cosθ)^2](sinθ)^2}

= 3a^3π/2*关于θ的从0到π/2的定积分,被积函数为{[sin(2θ)]^2}

= 3a^3π/2*关于θ的从0到π/2的定积分,被积函数为{[1-cos(4θ)]/2}

= 3a^3π/2[π/4]

= 3a^3π^2/8

关于θ的从0到π的定积分,被积函数为{a^3π[(cosθ)^3 ](sinθ)^2}= 0

所以,旋转体的体积= 关于θ的从0到π的定积分,被积函数为{a^3π[1 + 3cosθ + 3(cosθ)^2 + (cosθ)^3 ](sinθ)^2}

= a^3π^2/2 + 0 + 3a^3π^2/8 + 0

= 7a^3π^2/8

扩展资料:

极坐标系是一个二维坐标系统。该坐标系统中的点由一个夹角和一段相对中心点——极点(相当于我们较为熟知的直角坐标系中的原点)的距离来表示。极坐标系的应用领域十分广泛,包括数学、物理、工程、航海以及机器人等领域。

在两点间的关系用夹角和距离很容易表示时,极坐标系便显得尤为有用;而在平面直角坐标系中,这样的关系就只能使用三角函数来表示。对于很多类型的曲线,极坐标方程是最简单的表达形式,甚至对于某些曲线来说,只有极坐标方程能够表示。

参考资料来源:百度百科-体积

东莞大凡
2024-11-19 广告
板格标定棋盘是我们东莞市大凡光学科技有限公司在精密光学测量领域的重要工具。它采用高精度设计,确保每一个格板都达到严格的校准标准。通过使用板格标定棋盘,我们能够有效地对光学测量系统进行校准,从而提升测量的准确性和可靠性。这一工具在光学仪器的研... 点击进入详情页
本回答由东莞大凡提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式