
三角形ABC中sinA/2sinB/2sinC/2=1/8,判断三角形形状
1个回答
展开全部
法1(sinA/2)^2+(sinB/2)^2+(sinC/2)^2+2sinA/2sinB/2sinC/2
=sinA/2((sinA/2)+2sinB/2sinC/2)+(sinB/2)^2+(sinC/2)^2
=sinA/2((cos(B+C)/2)+2sinB/2sinC/2)+(sinB/2)^2+(sinC/2)^2
=sinA/2*cos(B+C)/2+(1-cosB)/2+(1-cosC)/2(积化和差)
=cos(B+C)/2*cos(B+C)/2+1-cos(B+C)/2*cos(B+C)/2
=1故(sinA/2)^2+(sinB/2)^2+(sinC/2)^2取最小值sinA/2sinB/2sinC/2最大值
(sinA/2)^2+(sinB/2)^2+(sinC/2)^2+2sinA/2sinB/2sinC/2>=3(3次√(sinA/2sinB/2sinC/2)^2)+2sinA/2sinB/2sinC/2
=sinA/2((sinA/2)+2sinB/2sinC/2)+(sinB/2)^2+(sinC/2)^2
=sinA/2((cos(B+C)/2)+2sinB/2sinC/2)+(sinB/2)^2+(sinC/2)^2
=sinA/2*cos(B+C)/2+(1-cosB)/2+(1-cosC)/2(积化和差)
=cos(B+C)/2*cos(B+C)/2+1-cos(B+C)/2*cos(B+C)/2
=1故(sinA/2)^2+(sinB/2)^2+(sinC/2)^2取最小值sinA/2sinB/2sinC/2最大值
(sinA/2)^2+(sinB/2)^2+(sinC/2)^2+2sinA/2sinB/2sinC/2>=3(3次√(sinA/2sinB/2sinC/2)^2)+2sinA/2sinB/2sinC/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询