lnx的泰勒级数展开式怎么推导?

 我来答
与你共评社会时事
2022-10-23 · TA获得超过2904个赞
知道答主
回答量:30
采纳率:0%
帮助的人:9258
展开全部

ln(1-x)的泰勒级数展开是:ln(1-x) = ln[1+(-x)] = Σ (-1)^(n+1) (-x)^n / n = Σ x^n / n ,-1≤ x。

泰勒展开
f(x)= f(0)+ f′(0)x+ f″(0)x ²/ 2!+...+ fⁿ(0)...

f(x)= ln(x+1)

f(0)=ln1=0

f′(0)=1/(x+1)=1

f″(0)=-(x+1)^(-2)=-1

f3(0)=-(-2)(x+1)^(-3)=2

f4(0)=2*(-3)(x+1)^(-4)=-6

fⁿ(0)=(-1)^(n+1)*(n-1)!

ln(x+1)=0+x+(-1)x ²/ 2!+.2*x ³/ 3!+...+ (-1)^(n+1)*(n-1)!*x ⁿ/ n!
=x-x ²/ 2+x ³/ 3-.+(-1)^(n+1)x ⁿ/ n

因为ln(1+x) = Σ (-1)^(n+1) x^n / n ,-1< x ≤ 1,所以ln(1-x) = ln[1+(-x)] = Σ (-1)^(n+1) (-x)^n / n = Σ x^n / n ,-1≤ x。

扩展资料:

带Peano余项的Taylor公式(Maclaurin公式):可以反复利用L'Hospital法则来推导:

f(x)=f(x0)+f'(x0)/1!*(x-x0)+f''(x0)/2!*(x-x0)^2+…+f^(n) (x0)/n!(x-x0)^n+o((x-x0)^n)

泰勒中值定理:若函数f(x)在含有x的开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x0)多项式和一个余项的和。

f(x)=f(x0)+f'(x0)*(x-x0)+f''(x0)/2!*(x-x0)^2,+f'''(x0)/3!*(x-x0)^3+……+f(n)(x0)/n!*(x-x0)^n+Rn(x),其中Rn(x)=f(n+1)(ξ)/(n+1)!*(x-x0)^(n+1),这里ξ在x和x0之间,该余项称为拉格朗日型的余项。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式