怎样用弦长公式来求椭圆的弦长最短呢?
1、几何证明法:
过焦点F的弦AB长 = FA+FB = 离心率乘以(A到准线的距离+B到准线的距离)= 2倍离心率·AB中点到准线的距离。
设AB中点为M,若FA ≥ FB,则F在线段BM上。
M到准线的距离 ≥ B到准线的距离,可知M到准线的距离 ≥ F到准线的距离。
而AB为通径时,M到准线的距离 = F到准线的距离。
此时M到准线的距离取到最小值,于是AB长度也取得最小值。
2、代数方程法:
设出椭圆方程为x^2/a^+y^2/b^2=1
过焦点F(c,0)的直线方程为x=my+c(这里不能设成y=k(x-c),因为通径的斜率不存在)。
然后方程联立,利用弦长公式可整理成关于m的函数式。
从中求出当且仅当m=0时,弦长最短。
扩展资料:
在数学中,椭圆是围绕两个焦点的平面中的曲线,使得对于曲线上的每个点,到两个焦点的距离之和是恒定的。因此,它是圆的概括,其是具有两个焦点在相同位置处的特殊类型的椭圆。椭圆的形状(如何“伸长”)由其偏心度表示,对于椭圆可以是从0(圆的极限情况)到任意接近但小于1的任何数字。
椭圆是封闭式圆锥截面:由锥体与平面相交的平面曲线。椭圆与其他两种形式的圆锥截面有很多相似之处,抛物线和双曲线,两者都是开放的和无界的。圆柱体的横截面为椭圆形,除非该截面平行于圆柱体的轴线。
椭圆也可以被定义为一组点,使得曲线上的每个点的距离与给定点(称为焦点)的距离与曲线上的相同点的距离的比值给定行(称为directrix)是一个常数。该比率称为椭圆的偏心率。