幂级数收敛区间怎么求
1个回答
展开全部
问题一:求幂级数的收敛区间 首先lim{n→∞} (2/3)^n = 0.
进而1 = lim{n→∞} 1-(2/3)^n ≤ lim{n→∞} (1+(-2/抚3)^n)^(1/n) ≤ lim{n→∞} 1+(2/3)^n = 1.
故lim{n→∞} (1+(-2/3)^n)^(1/n) = 1.
又lim{n→∞} n^(1/n) = 1.
可得lim{n→∞} ((3^n+(-2)^n)/n)^(1/n) = 3・lim{n→∞} ((1+(-2/3)^n)/n)^(1/n) = 3.
可知幂级数的收敛半径为1/3.
只需讨论端点处的敛散性.
对x = 1/3, 通项为(1+(-2/3)^n)/n, 是一个与1/n等价的正项级数, 由比较判别法知其发散.
对x = -1/3, 通项为((-1)^n+(2/3)^n)/n. ∑(2/3)^n/n与∑(-1)^n/n均收敛, 故x = -1/3时收敛.
综合得收敛域为[-1/3,1/3).
问题二:求图片中幂级数的收敛区间 要过程 谢谢 都可以用D'Alembert判别法, 幂级数在收敛半径内绝对收敛.
1. 第n项: (x-6)^n/(n!・6^n).
第n+1项: (x-6)^(n+1)/((n+1)!・6^(n+1)).
当n → ∞时, 比值(x-6)/(6(n+1)) → 0, 对任意x成立.
因此幂级数收敛区间为(-∞,+∞).
2. 第n项: n!(x-6)^n/6^n.
第n+1项: (n+1)!(x-6)^(n+1)/6^(n+1).
当n → ∞时, 比值(n+1)(x-6)/6 → ∞, 对任意x ≠ 6成立.
因此幂级数只在x = 6处收敛.
3. 第n项: (x-6)^n/6^n.
第n+1项: (x-6)^(n+1)/6^(n+1).比值为常数(x-6)/6.
当|x-6| 6, 级数发散.
当|x-6| = 6, 级数通项不收敛到0, 因此级数发散.
因此幂级数只对|x-6| 问题三:幂级数收敛域和收敛区间有什么区别,收敛域和收敛区间分别该怎么求 收敛区间是个开区间,而收敛域就是判断在收敛区间的端点上是否收敛
就像你求出一个级数的收敛半径为5那么此时收敛区间为(-5,5)而下一步求收敛域就带x=-5和x=5,分别看是否收敛
比如x=-5时收敛,x=5时发散那么收敛域为[-5,5)
问题四:收敛区间怎么求 9、分成两个幂级数
分别求收敛半径
取半径小的,计算收敛区间
过程如下图:
问题五:求幂级数和函数,幂级数收敛区间 100分 你好!可以如图用求导求积法求出和函数,需要先讨论收敛域。经济数学团队帮你解答,请及时采纳。谢谢!
问题六:幂级数的收敛域与收敛区间有什么具体区别? 假设已经求出了幂级数的收敛半径R,
所问的幂级数的收敛区间是指开区间(-R,R);
再判断出该幂级数在x= -R以及x=R处是否收敛,
把这两点、也就是开区间(-R,R)的两个端点考虑进来,就是收敛域。
比如若是在x= -R收敛,在x=R发散,则收敛域为[-R,R)。
进而1 = lim{n→∞} 1-(2/3)^n ≤ lim{n→∞} (1+(-2/抚3)^n)^(1/n) ≤ lim{n→∞} 1+(2/3)^n = 1.
故lim{n→∞} (1+(-2/3)^n)^(1/n) = 1.
又lim{n→∞} n^(1/n) = 1.
可得lim{n→∞} ((3^n+(-2)^n)/n)^(1/n) = 3・lim{n→∞} ((1+(-2/3)^n)/n)^(1/n) = 3.
可知幂级数的收敛半径为1/3.
只需讨论端点处的敛散性.
对x = 1/3, 通项为(1+(-2/3)^n)/n, 是一个与1/n等价的正项级数, 由比较判别法知其发散.
对x = -1/3, 通项为((-1)^n+(2/3)^n)/n. ∑(2/3)^n/n与∑(-1)^n/n均收敛, 故x = -1/3时收敛.
综合得收敛域为[-1/3,1/3).
问题二:求图片中幂级数的收敛区间 要过程 谢谢 都可以用D'Alembert判别法, 幂级数在收敛半径内绝对收敛.
1. 第n项: (x-6)^n/(n!・6^n).
第n+1项: (x-6)^(n+1)/((n+1)!・6^(n+1)).
当n → ∞时, 比值(x-6)/(6(n+1)) → 0, 对任意x成立.
因此幂级数收敛区间为(-∞,+∞).
2. 第n项: n!(x-6)^n/6^n.
第n+1项: (n+1)!(x-6)^(n+1)/6^(n+1).
当n → ∞时, 比值(n+1)(x-6)/6 → ∞, 对任意x ≠ 6成立.
因此幂级数只在x = 6处收敛.
3. 第n项: (x-6)^n/6^n.
第n+1项: (x-6)^(n+1)/6^(n+1).比值为常数(x-6)/6.
当|x-6| 6, 级数发散.
当|x-6| = 6, 级数通项不收敛到0, 因此级数发散.
因此幂级数只对|x-6| 问题三:幂级数收敛域和收敛区间有什么区别,收敛域和收敛区间分别该怎么求 收敛区间是个开区间,而收敛域就是判断在收敛区间的端点上是否收敛
就像你求出一个级数的收敛半径为5那么此时收敛区间为(-5,5)而下一步求收敛域就带x=-5和x=5,分别看是否收敛
比如x=-5时收敛,x=5时发散那么收敛域为[-5,5)
问题四:收敛区间怎么求 9、分成两个幂级数
分别求收敛半径
取半径小的,计算收敛区间
过程如下图:
问题五:求幂级数和函数,幂级数收敛区间 100分 你好!可以如图用求导求积法求出和函数,需要先讨论收敛域。经济数学团队帮你解答,请及时采纳。谢谢!
问题六:幂级数的收敛域与收敛区间有什么具体区别? 假设已经求出了幂级数的收敛半径R,
所问的幂级数的收敛区间是指开区间(-R,R);
再判断出该幂级数在x= -R以及x=R处是否收敛,
把这两点、也就是开区间(-R,R)的两个端点考虑进来,就是收敛域。
比如若是在x= -R收敛,在x=R发散,则收敛域为[-R,R)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询