已知X1+X2+X3+X4+……+Xn,求证X1方加X2方加X3方一直加到Xn方≥n分之一.?

 我来答
温屿17
2022-10-26 · TA获得超过1.3万个赞
知道小有建树答主
回答量:827
采纳率:0%
帮助的人:102万
展开全部
X1+X2+X3+X4+……+Xn=1对吧
根据柯西不等式
(x1^2+x2^3+x3^2+……+xn^2)(1^2+1^2+……+1^2)≥(x1*1+x2*1+xn*1)^2
右边因为X1+X2+X3+X4+……+Xn=1
所以(x1^2+x2^3+x3^2+……+xn^2)(1^2+1^2+……+1^2)≥1
1^2+1^2+……+1^2一共有n项 就是 n 除到右边去
得x1^2+x2^3+x3^2+……+xn^2≥1/n,1,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式