∫(0→sinx)ln(1+x)dt

 我来答
户如乐9318
2022-08-15 · TA获得超过6682个赞
知道小有建树答主
回答量:2559
采纳率:100%
帮助的人:142万
展开全部
原式=∫(0→sinx)ln(1+t)dt =tln(1+t)(0→sinx)-∫(0→sinx)tdln(1+t) ←分部积分法=sinxln(1+sinx)-∫(0→sinx)t/(1+t) dt=sinxln(1+sinx)-∫(0→sinx)1-1/(1+t) dt=sinxln(1+sinx)-sinx+ln(t+1)(0→sinx)=sinxln(1...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
网易云信
2023-12-06 广告
UIkit是一款轻量级、模块化、基于jQuery的UI框架,它提供了大量易于使用的UI组件,包括按钮、表单、表格、对话框、通知等等。UIkit的设计理念是尽可能地简洁和灵活,开发者可以根据自己的需求自由地选择需要的组件和样式,从而快速构建出... 点击进入详情页
本回答由网易云信提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式