著名的斐波那契数列,'1,2,3,5,8,13,21,...'的第2012个数除以3所得的余数是多少?
1个回答
展开全部
首先求出这个数列的每一项除以3所得余数的变化规律,再求所求比较简单.
这个数列的变化规律是:从第三个数开始递增,且是前两项之和,那么有1、1、2、3、5、8、13、21、34、55、89、144、233、377、610、987……
分别除以3得余数分别是1、1、2、0、2、2、1、0、1、1、2、0、2、2、1、0……
由此可见余数的变化规律是按1、1、2、0、2、2、1、0循环,周期是8.
因为2012÷8=251……4,
而4对应的余数是0,所以这个数列的2012个数被3除后所得的余数是0.
这个数列的变化规律是:从第三个数开始递增,且是前两项之和,那么有1、1、2、3、5、8、13、21、34、55、89、144、233、377、610、987……
分别除以3得余数分别是1、1、2、0、2、2、1、0、1、1、2、0、2、2、1、0……
由此可见余数的变化规律是按1、1、2、0、2、2、1、0循环,周期是8.
因为2012÷8=251……4,
而4对应的余数是0,所以这个数列的2012个数被3除后所得的余数是0.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询