3个回答
展开全部
换元法. 令 t=3tanX, 得36+4t^2=36(1+(tanX)^2)
=36(secX)^2
而且 dt = 3(secX)^2 dX
因此
根号下(36+4t^2)dt
的不定积分等于
根号下(36(secX)^2)* 3(secX)^2 dX 的不定积分
= 27 * (1/cosX)^3 dX 的不定积分
= 27 * (sinX) / (cosX)^4 dX 的不定积分
= -27 * 1/(cosX)^4 d(cosX) 的不定积分
= -27 * (-1/3) * 1/(cosX)^3 + C
= 9/(cosX)^3 + C
所以
积分区域为t从0到4 求根号下(36+4t^2)的定积分
= 积分区域为 X从0到arctan(4/3), 求根号下根号下(36(secX)^2)* 3(secX)^2 dX 的定积分
= 9/(cosX)^3 | 以X=arctan(4/3)代入 减去 9/(cosX)^3 | 以 X=0代入
= 9/(3/5)^3 - 9/1
= 125/3 - 9
= 98/3
=36(secX)^2
而且 dt = 3(secX)^2 dX
因此
根号下(36+4t^2)dt
的不定积分等于
根号下(36(secX)^2)* 3(secX)^2 dX 的不定积分
= 27 * (1/cosX)^3 dX 的不定积分
= 27 * (sinX) / (cosX)^4 dX 的不定积分
= -27 * 1/(cosX)^4 d(cosX) 的不定积分
= -27 * (-1/3) * 1/(cosX)^3 + C
= 9/(cosX)^3 + C
所以
积分区域为t从0到4 求根号下(36+4t^2)的定积分
= 积分区域为 X从0到arctan(4/3), 求根号下根号下(36(secX)^2)* 3(secX)^2 dX 的定积分
= 9/(cosX)^3 | 以X=arctan(4/3)代入 减去 9/(cosX)^3 | 以 X=0代入
= 9/(3/5)^3 - 9/1
= 125/3 - 9
= 98/3
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
t=3tan u
进行替换
进行替换
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
换元!
等下!偶做图片传给你!
等下!偶做图片传给你!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询