多边形的内角和是多少度

 我来答
甜度不限定
2023-01-21 · TA获得超过884个赞
知道小有建树答主
回答量:1628
采纳率:100%
帮助的人:115万
展开全部
  多边形的内角和=(n-2)×180°,其中n表示多边形的边数。任意正多边形的外角和=360°正多边形任意两条相邻边连线所构成的三角形是等腰三角形。

  多边形内角和定理证明:

  在n边形内任取一点O,连结O与各个顶点,把n边形分成n个三角形。

  因为这n个三角形的内角的和等于n×180°,以O为公共顶点的n个角的和是360°。

  所以n边形的内角和是n×180°-2×180°=(n-2)·180°。

  即n边形的内角和等于(n-2)×180°。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式