函数的极值点一定是驻点吗
1个回答
展开全部
对于y=f(x),使一阶导数f'(x)=0的点是函数的驻点。函数极值点不一定是驻点,如f(x)=|x|,在x=0处导数不存在,当然也就不是驻点,但x=0显然是极小值点。反之,函数的驻点但也不一定是极值点。
在微积分,驻点又称为平稳点、稳定点或临界点是函数的一阶导数为零,即在这一点,函数的输出值停止增加或减少。对于一维函数的图像,驻点的切线平行于x轴。对于二维函数的图像,驻点的切平面平行于xy平面。
值得注意的是,一个函数的驻点不一定是这个函数的极值点(考虑到这一点左右一阶导数符号不改变的情况);反过来,在某设定区域内,一个函数的极值点也不一定是这个函数的驻点(考虑到边界条件)。
函数的一阶导数为0的点称为函数的驻点,驻点可以划分函数的单调区间。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询