求函数的不定积分

 我来答
小熊玩科技gj
高能答主

2023-06-27 · 世界很大,慢慢探索
知道大有可为答主
回答量:2.2万
采纳率:100%
帮助的人:567万
展开全部

xe^x的积分是:

∫ xe^(- x) dx

= - ∫ xe^(- x) d(- x)

= - ∫ x d[e^(- x)]

= - [xe^(- x) - ∫ e^(- x) dx] <--分部积分法

= - xe^(- x) + (- 1)∫ e^(- x) d(- x)

= - xe^(- x) - e^(- x) + C

= - (x + 1)e^(- x) + C

根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。

这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。

连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式