x趋于+∞求x*(1-lnx/x)^x的极限?

 我来答
小茗姐姐V
高粉答主

2023-07-07 · 关注我不会让你失望
知道大有可为答主
回答量:4.7万
采纳率:75%
帮助的人:7014万
展开全部

方法如下,请作参考:

若有帮助,请采纳。

渣渣毀
2023-07-07 · 超过49用户采纳过TA的回答
知道小有建树答主
回答量:312
采纳率:86%
帮助的人:3.9万
展开全部
我们可以使用洛必达法则来求解这个极限。首先,我们将原式变形为:
x * (1 - lnx/x)^x = x * e^(x * ln(1 - lnx/x))
然后,我们令 y = x * ln(1 - lnx/x),则原式变为:
x * e^y
我们需要求 y 当 x 趋近于正无穷时的极限。由于 y 的形式比较复杂,我们可以使用洛必达法则来求解。
对 y 求导,得:
dy/dx = ln(1 - lnx/x) + x * (1 / (1 - lnx/x)) * (-lnx / x^2 + 1 / x)
化简后,得:
dy/dx = ln(1 - lnx/x) + (1 / (1 - lnx/x)) * (1 - lnx / x)
当 x 趋近于正无穷时,lnx/x 趋近于 0,所以 dy/dx 趋近于 ln(1) + 1 = 1。
因此,当 x 趋近于正无穷时,y 趋近于 x。
所以,当 x 趋近于正无穷时,原式 x * e^y 趋近于 x * e^x。
因此,当 x 趋近于正无穷时,x * (1 - lnx/x)^x 的极限为 正无穷。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式