怎样才算复合函数
复合函数含义:
函数y=log2x是对数函数,那么函数y=log2(2x-1)是什么函数呢?我们可以这样理解:设y=log2u,u=2x-1,因此函数y=log2(2x-1)是由对数函数y=log2u和一次函数u=2x-1经过复合而成的。一般地:
若 ,又 ,且 值域与 定义域的交集不空,则函数 叫 的复合函数,其中 叫外层函数, 叫内层函数,简而言之,所谓复合函数就是由一些初等函数复合而成的函数。
例:y=1/[(x^2+2x+6)^0.5]设x^2+2x+6为t,(x^2+2x+6)^0.5为a
可以看成f(x)=x^2+2x+6
h(t)=t^0.5
g(a)=1/a
所谓复合函数其实主要目的把你不懂得函数化成你熟悉的函数像2次函数,反比例函数等等。这样就可以解决题目了。
复合函数的单调性是“同增异减”
若f(x)在它的定义域上为增函数,h(t)在它的定义域上为减函数那么h(t)和f(x)组成的复合函数单调性为减函数,若g(a)的单调性为
减,那么h(t)和f(x)和g(a)组成的复合函数单调性为增函数
简言之:复合函数就是: 把一个函数中的自变量替换成另一个函数所得的新函数.
例如: f(x) = 3x+5, g(x) = x2+1; 复合函数f(g(x))即把f(x)里面的x换成g(x),
f(g(x)) = 3g(x)+5 = 3(x2+1)+5 = 3x2+8.扩展资料:
若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是D={x|x∈A,且g(x)∈B} 综合考虑各部分的x的取值范围,取他们的交集。
求函数的定义域主要应考虑以下几点:
1、当为整式或奇次根式时,R的值域;
2、当为偶次根式时,被开方数不小于0(即≥0);
3、当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;
4、当为指数式时,对零指数幂或负整数指数幂,底不为0(如,中)。
5、当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。
6、分段函数的定义域是各段上自变量的取值集合的并集。
7、由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求
8、对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。
9、对数函数的真数必须大于零,底数大于零且不等于1。
10、三角函数中的切割函数要注意对角变量的限制。