手算开根号的计算方法

 我来答
小蒋生活问答
2023-07-14 · TA获得超过120个赞
知道大有可为答主
回答量:4603
采纳率:100%
帮助的人:61.6万
展开全部

手算开根号的计算方法可以分为两种常用的方法:试位法和牛顿迭代法。

1.试位法:

步骤1:将被开方数写成一对平方数的和的形式。

步骤2:找到一个整数,使其平方小于或等于被开方数,而且下一个整数的平方大于被开方数。这个整数就是开根号后的整数部分。

步骤3:将被开方数减去整数部分的平方,得到一个余数。

步骤4:将余数乘以100,再除以整数部分的两倍,并在整数部分后面加上一个未知数。这个未知数就是开根号后的小数部分的第一位。

步骤5:将整个数再次乘以这个未知数,得到一个结果。

步骤6:将这个结果乘以10,再除以整数部分的两倍,并在小数部分的后面加上一个新的未知数。这个未知数就是开根号后的小数部分的第二位。

步骤7:重复步骤5和步骤6,直到得到所需的精度为止。

2.牛顿迭代法:

步骤1:先猜测一个近似值作为开根号的结果。

步骤2:用被开方数除以这个近似值,得到一个商。

步骤3:将这个商和近似值相加,再除以2,得到一个更接近真实结果的近似值。

步骤4:将新的近似值代入步骤2,继续进行迭代,直到达到所需的精度为止。

无论是哪种方法,都需要进行多次迭代,直到达到所需的精度。而且手算开根号通常只适用于较小的数,对于较大的数,使用计算器或电脑进行计算更为快捷和准确。

牛顿迭代法的用处:

1.求解非线性方程

牛顿迭代法可以用来求解任意形式的非线性方程,如多项式方程、指数方程、对数方程等。它通过不断逼近方程的根来求解方程的解。

2.求解优化问题

在优化问题中,往往需要找到使得某个函数取得最大值或最小值的变量取值。牛顿迭代法可以用来求解这类问题,通过寻找函数的极值点来找到最优解。

3.求解方程组

对于多个未知数的方程组,可以将其转化为一个非线性方程,然后使用牛顿迭代法求解。牛顿迭代法可以通过不断迭代来逼近方程组的解。

4.求解微分方程

牛顿迭代法可以用来求解一些特定的微分方程,如常微分方程、偏微分方程等。它可以通过将微分方程转化为非线性方程来求解。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式