一道生物题
植物体进行的下列生理活动中,受气孔关闭影响的是-------------()1.水分的吸收和运输2.无机盐的吸收3.光合作用4.呼吸作用A.1.2B.3.4C.1.3.4...
植物体进行的下列生理活动中,受气孔关闭影响的是-------------( )
1.水分的吸收和运输 2.无机盐的吸收 3.光合作用 4.呼吸作用
A. 1.2 B. 3.4 C. 1.3.4 D. 1.2.3.4
老师的答案是C,说是无机盐的吸收和呼吸作用有关,那么有关的话,为什么不选D呢?
拜托各位知道的快帮帮我,最好今天晚上出答案(详细的解释下)
明天下午就考试了!!!拜托了..... 展开
1.水分的吸收和运输 2.无机盐的吸收 3.光合作用 4.呼吸作用
A. 1.2 B. 3.4 C. 1.3.4 D. 1.2.3.4
老师的答案是C,说是无机盐的吸收和呼吸作用有关,那么有关的话,为什么不选D呢?
拜托各位知道的快帮帮我,最好今天晚上出答案(详细的解释下)
明天下午就考试了!!!拜托了..... 展开
展开全部
植物吸收无机盐的方式叫做主动运输。主动运输即Na+、K+和Ca2+等离子,都不能自由地通过磷脂双分子层,它们从低浓度一侧运输到高浓度一侧,需要载体蛋白的协助,同时还需要消耗细胞内化学反应所释放的能量。
从概念我们可以知道,无机盐吸收所需要的条件。
所以无机盐的吸收和气孔关闭没有必然联系。
然而,无机盐的运输需要水为载体,机从根部向植物体传递需要水分的运载,这是和光和作用有关的。因此应该是无机盐的运输与气孔关闭有关而不是运输。
从概念我们可以知道,无机盐吸收所需要的条件。
所以无机盐的吸收和气孔关闭没有必然联系。
然而,无机盐的运输需要水为载体,机从根部向植物体传递需要水分的运载,这是和光和作用有关的。因此应该是无机盐的运输与气孔关闭有关而不是运输。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
气孔是蒸腾过程中水蒸气从体内排到体外的主要出口,也是光合作用和呼吸作用与外界气体交换的“大门”,影响着蒸腾、光合、呼吸等作用。
首先说蒸腾作用。气孔是会运动的。一般来说,气孔在白天开放,晚上关闭。气孔之所以能够运动,是与保卫细胞的结构特点有关。保卫细胞的胞壁厚度不同,加上纤维素微纤丝与胞壁相连,所以会导致气孔开放。当保卫细胞吸水膨胀时,较薄的外壁易于伸长,向外扩展,但微纤丝难以伸长,于是气孔打开,蒸腾作用加强。
气孔能控制气体出入,尤其是二氧化碳的进出,所以与光合、呼吸有关
叶面肥是营养元素施用于农作物叶片表面,通过叶片的吸收而发挥基功能的一种肥料类型,植物的叶片有上下两层表皮,由表皮细腻组成,表上细胞的外侧有角质层和蜡质,可以保护表皮组织下的叶肉细胞行使光合、呼吸等功能,不受外界不利条件变化的影响,叶片表现还有许多微小的气孔,行使气体更换的功能。研究表明,角质层由一种带有羟基和羧基的长碳链脂肪酸聚合物组成,这种聚合物的分子间隙及分子上的羟基、羧基亲水基团可以让水溶液渗透进入叶内,当然,叶片表面的气孔是叶面肥进入叶片更方便的通道。化肥中尿素类物质对表皮细胞的角质层有软化作用,可以加速其它营养物质的渗入,所以尿素类物质对表皮细胞的角质层有软化作用,可以加速其它营养物质的渗入,所以尿素成为叶面肥重要的组成成分。
生理意义
蒸腾作用的生理意义有下列三点:
1.蒸腾作用是植物对水分的吸收和运输的一个主要动力,特别是高大的植物,假如没有蒸腾作用,由蒸腾拉力引起的吸水过程便不能产生,植株较高部分也无法获得水分。
2.由于矿质盐类(无机盐)要溶于水中才能被植物吸收和在体内运转,既然蒸腾作用是对水分吸收和流动的动力,那么,矿物质也随水分的吸收和流动而被吸入和分布到植物体各部分中去。所以,蒸腾作用对这两类物质在植物体内运输都是有帮助的。
3.蒸腾作用能够降低叶片的温度。太阳光照射到叶片上时,大部分能量转变为热能,如果叶子没有降温的本领,叶温过高,叶片会被灼伤。而在蒸腾过程中,水变为水蒸气时需要吸收热能(1g水变成水蒸气需要能量,在20℃时是2444.9J,30℃时是2430.2J。
(一) 蒸腾作用的生理意义 陆生植物在进行光合和呼吸的过程中,以伸展在空中的枝叶与周围环境发生气体交换,然而随之而来的是大量地丢失水分。蒸腾作用消耗水分,这对陆生植物来说是不可避免的,它既会引起水分亏缺,破坏植物的水分平衡,甚至引起祸害,但同时,它又对植物的生命活动具有一定的意义。�
1.蒸腾作用能产生的蒸腾拉力,蒸腾拉力是植物被动吸水与转运水分的主要动力,这对高大的乔木尤为重要。
2.蒸腾作用促进木质部汁液中物质的运输。土壤中的矿质盐类和根系合成的物质可随着水分的吸收和集流而被运输和分布到植物体各部分去。
3.蒸腾作用能降低植物体的温度。这是因为水的气化热高,在蒸腾过程中可以散失掉大量的辐射热。
4.蒸腾作用的正常进行有利于CO2的同化,这是因为叶片进行蒸腾作用时,气孔是开放的,开放的气孔便成为CO2进入叶片的通道。
(二)蒸腾作用的方式� 蒸腾作用有多种方式。幼小的植物,暴露在地上部分的全部表面都能蒸腾。植物长大后,茎枝表面形成木栓,未木栓化的部位有皮孔,可以进行皮孔蒸腾(lenticular transpiration)。但皮孔蒸腾的量甚微,仅占全部蒸腾量的0.1%左右,植物的茎、花、果实等部位的蒸腾量也很有限,因此,植物蒸腾作用绝大部分是靠叶片进行的。 叶片的蒸腾作用方式有两种,一是通过角质层的蒸腾,称为角质蒸腾(cuticular transpiration);二是通过气孔的蒸腾,称为气孔蒸腾(stomatal transpiration)。角质层本身不易让水通过,但角质层中间含有吸水能力强的果胶质,同时角质层也有孔隙,可让水分自由通过。角质层蒸腾和气孔蒸腾在叶片蒸腾中所占的比重,与植物的生态条件和叶片年龄有关,实质上也就是和角质层厚薄有关。例如:阴生和湿生植物的角质蒸腾往往超过气孔蒸腾。幼嫩叶子的角质蒸腾可达总蒸腾量的1/3到1/2。一般植物成熟叶片的角质蒸腾,仅占总蒸腾量的3%~5%。因此,气孔蒸腾是中生和旱生植物蒸腾作用的主要方式。
二、气孔蒸腾� 气孔是植物进行体内外气体交换的重要门户。水蒸气、CO2、O2都要共用气孔这个通道,气孔的开闭会影响植物的蒸腾、光合、呼吸等生理过程。 气孔是植物叶片表皮组织的小孔,一般由成对的保卫细胞(guard cell)组成。保卫细胞四周环绕着表皮细胞,毗连的表皮细胞如在形态上和其它表皮细胞相同,就称之为邻近细胞(neighbouring cell),如有明显区别,则称为副卫细胞(subsidiary cell)。保卫细胞与邻近细胞或副卫细胞构成气孔复合体。保卫细胞在形态上和生理上与表皮细胞有显著的差别。 (一) 气孔的形态结构及生理特点� 1. 气孔数目多、分布广 气孔的大小、数目和分布因植物种类和生长环境而异(表2-3)。一般单子叶植物叶的上下表皮都有气孔分布,而双子叶植物主要分布在下表皮。浮水植物气孔都分布在上表皮。表2-3 不同类型植物的气孔数目和大小植 物 类 型气孔数/叶面积(mm2)气孔口径(μm)长 宽 气孔面积�占叶面积%阳性植物。 2. 气孔的面积小,蒸腾速率高 气孔一般长约7~30μm ,宽约1~6μm。而进出气孔的CO2和H2O分子的直径分别只有0.46nm和0.54nm,因而气体交换畅通。气孔在叶面上所占面积百分比,一般不到1%,气孔完全张开也只占1%~2%,但气孔的蒸腾量却相当于所在叶面积蒸发量的10%~50%,甚至达到100%。也就是说,经过气孔的蒸腾速率要比同面积的自由水面快几十倍,甚至100倍。这是因为气体通过多孔表面扩散的速率,不与小孔的面积成正比,而与小孔的周长成正比。这就是所谓的小孔扩散律(small pore diffusion law)。这是因为在任何蒸发面上,气体分子除经过表面向外扩散外,还沿边缘向外扩散。在边缘处,扩散分子相互碰撞的机会少,因此扩散速率就比在中间部分的要快些。扩散表面的面积较大时(例如大孔),边缘周长与面积的比值小,扩散主要在表面上进行,经过大孔的扩散速率与孔的面积成正比。然而当扩散表面减小时,边缘周长与面积的比值即增大,经边缘的扩散量就占较大的比例,且孔越小,所占的比例越大,扩散的速度就越快(表2-4)。表2-4 相同条件下水蒸气通过各种小孔的扩散小孔直径(mm)扩散失水(g)相对失水量小孔相对面积小孔相对周长同面积相对失水量。 3. 保卫细胞体积小,膨压变化迅速 保卫细胞比表皮细胞小得多。一片叶子上所有保卫细胞的体积仅为表皮细胞总体积的1/13或更小。因此, 只要有少量溶质进出保卫细胞,便会引起保卫细胞膨压(turgor pressure)迅速变化,调节气孔开闭。 4. 保卫细胞具有多种细胞器 保卫细胞中细胞器的种类比其他表皮细胞中的多,特别是含有较多的叶绿体。保卫细胞中的叶绿体具有光化学活性,能进行光合磷酸化合成ATP,只是缺少固定CO2的关键酶Rubisco,但是保卫细胞的细胞质中含有PEP羧化酶,能进行PEP的羧化反应,其产物为苹果酸(PEP+HCO3-→苹果酸)。叶绿体内含有淀粉体,在白天光照下淀粉会减少,而暗中淀粉则积累。这和正常的光合组织中恰好相反。此外,保卫细胞中还含有异常丰富的线粒体,为叶肉细胞的5~10倍,推测其呼吸旺盛,能为开孔时的离子转运提供能量。 5. 保卫细胞具有不均匀加厚的细胞壁及微纤丝结构 高等植物保卫细胞的细胞壁具有不均匀加厚的特点。例如水稻、小麦等禾本科植物的保卫细胞呈哑铃形(dumbbell shape),中间部分细胞壁厚,两端薄,吸水膨胀时,两端薄壁部分膨大,使气孔张开;棉花、大豆等双子叶植物和大多数单子叶植物的保卫细胞呈肾形(kidney shape),靠气孔口一侧的腹壁厚,背气孔口一侧的背壁薄。并且在保卫细胞壁上有许多以气孔口为中心辐射状径向排列的微纤丝, 它限制了保卫细胞沿短轴方向直径的增大(图2-11)。当保卫细胞吸水,膨压加大时,外壁向外扩展,并通过微纤丝将拉力传递到内壁,将内壁拉离开来,气孔就张开。图 2-11 保卫细胞壁上径向排列的�微纤丝与气孔的运动 实线为气孔开放时,虚线气孔关闭时上图为横切面,下图为表面观 6 .保卫细胞与周围细胞联系紧密 保卫细胞与副卫细胞或邻近细胞间没有胞间连丝,相邻细胞的壁很薄,质膜上存在有ATPase、K+通道,另外在保卫细胞外壁上还有外连丝(ectodesmata)结构,它也可作为物质运输的通道。这些结构有利于保卫细胞同副卫细胞或邻近细胞在短时间内进行H+、K+交换,以快速改变细胞水势。而有胞间连丝的细胞,细胞间的水和溶质分子可经胞间连丝相互扩散,不利于二者间建立渗透势梯度。 另外,保卫细胞能感受内、外信号而调节自身体积,从而控制气孔大小,主宰植物体与外界环境间的水分、气体等交换。因此,保卫细胞可说得上是植物体中奇妙的细胞。够降低叶片表面的温度。
首先说蒸腾作用。气孔是会运动的。一般来说,气孔在白天开放,晚上关闭。气孔之所以能够运动,是与保卫细胞的结构特点有关。保卫细胞的胞壁厚度不同,加上纤维素微纤丝与胞壁相连,所以会导致气孔开放。当保卫细胞吸水膨胀时,较薄的外壁易于伸长,向外扩展,但微纤丝难以伸长,于是气孔打开,蒸腾作用加强。
气孔能控制气体出入,尤其是二氧化碳的进出,所以与光合、呼吸有关
叶面肥是营养元素施用于农作物叶片表面,通过叶片的吸收而发挥基功能的一种肥料类型,植物的叶片有上下两层表皮,由表皮细腻组成,表上细胞的外侧有角质层和蜡质,可以保护表皮组织下的叶肉细胞行使光合、呼吸等功能,不受外界不利条件变化的影响,叶片表现还有许多微小的气孔,行使气体更换的功能。研究表明,角质层由一种带有羟基和羧基的长碳链脂肪酸聚合物组成,这种聚合物的分子间隙及分子上的羟基、羧基亲水基团可以让水溶液渗透进入叶内,当然,叶片表面的气孔是叶面肥进入叶片更方便的通道。化肥中尿素类物质对表皮细胞的角质层有软化作用,可以加速其它营养物质的渗入,所以尿素类物质对表皮细胞的角质层有软化作用,可以加速其它营养物质的渗入,所以尿素成为叶面肥重要的组成成分。
生理意义
蒸腾作用的生理意义有下列三点:
1.蒸腾作用是植物对水分的吸收和运输的一个主要动力,特别是高大的植物,假如没有蒸腾作用,由蒸腾拉力引起的吸水过程便不能产生,植株较高部分也无法获得水分。
2.由于矿质盐类(无机盐)要溶于水中才能被植物吸收和在体内运转,既然蒸腾作用是对水分吸收和流动的动力,那么,矿物质也随水分的吸收和流动而被吸入和分布到植物体各部分中去。所以,蒸腾作用对这两类物质在植物体内运输都是有帮助的。
3.蒸腾作用能够降低叶片的温度。太阳光照射到叶片上时,大部分能量转变为热能,如果叶子没有降温的本领,叶温过高,叶片会被灼伤。而在蒸腾过程中,水变为水蒸气时需要吸收热能(1g水变成水蒸气需要能量,在20℃时是2444.9J,30℃时是2430.2J。
(一) 蒸腾作用的生理意义 陆生植物在进行光合和呼吸的过程中,以伸展在空中的枝叶与周围环境发生气体交换,然而随之而来的是大量地丢失水分。蒸腾作用消耗水分,这对陆生植物来说是不可避免的,它既会引起水分亏缺,破坏植物的水分平衡,甚至引起祸害,但同时,它又对植物的生命活动具有一定的意义。�
1.蒸腾作用能产生的蒸腾拉力,蒸腾拉力是植物被动吸水与转运水分的主要动力,这对高大的乔木尤为重要。
2.蒸腾作用促进木质部汁液中物质的运输。土壤中的矿质盐类和根系合成的物质可随着水分的吸收和集流而被运输和分布到植物体各部分去。
3.蒸腾作用能降低植物体的温度。这是因为水的气化热高,在蒸腾过程中可以散失掉大量的辐射热。
4.蒸腾作用的正常进行有利于CO2的同化,这是因为叶片进行蒸腾作用时,气孔是开放的,开放的气孔便成为CO2进入叶片的通道。
(二)蒸腾作用的方式� 蒸腾作用有多种方式。幼小的植物,暴露在地上部分的全部表面都能蒸腾。植物长大后,茎枝表面形成木栓,未木栓化的部位有皮孔,可以进行皮孔蒸腾(lenticular transpiration)。但皮孔蒸腾的量甚微,仅占全部蒸腾量的0.1%左右,植物的茎、花、果实等部位的蒸腾量也很有限,因此,植物蒸腾作用绝大部分是靠叶片进行的。 叶片的蒸腾作用方式有两种,一是通过角质层的蒸腾,称为角质蒸腾(cuticular transpiration);二是通过气孔的蒸腾,称为气孔蒸腾(stomatal transpiration)。角质层本身不易让水通过,但角质层中间含有吸水能力强的果胶质,同时角质层也有孔隙,可让水分自由通过。角质层蒸腾和气孔蒸腾在叶片蒸腾中所占的比重,与植物的生态条件和叶片年龄有关,实质上也就是和角质层厚薄有关。例如:阴生和湿生植物的角质蒸腾往往超过气孔蒸腾。幼嫩叶子的角质蒸腾可达总蒸腾量的1/3到1/2。一般植物成熟叶片的角质蒸腾,仅占总蒸腾量的3%~5%。因此,气孔蒸腾是中生和旱生植物蒸腾作用的主要方式。
二、气孔蒸腾� 气孔是植物进行体内外气体交换的重要门户。水蒸气、CO2、O2都要共用气孔这个通道,气孔的开闭会影响植物的蒸腾、光合、呼吸等生理过程。 气孔是植物叶片表皮组织的小孔,一般由成对的保卫细胞(guard cell)组成。保卫细胞四周环绕着表皮细胞,毗连的表皮细胞如在形态上和其它表皮细胞相同,就称之为邻近细胞(neighbouring cell),如有明显区别,则称为副卫细胞(subsidiary cell)。保卫细胞与邻近细胞或副卫细胞构成气孔复合体。保卫细胞在形态上和生理上与表皮细胞有显著的差别。 (一) 气孔的形态结构及生理特点� 1. 气孔数目多、分布广 气孔的大小、数目和分布因植物种类和生长环境而异(表2-3)。一般单子叶植物叶的上下表皮都有气孔分布,而双子叶植物主要分布在下表皮。浮水植物气孔都分布在上表皮。表2-3 不同类型植物的气孔数目和大小植 物 类 型气孔数/叶面积(mm2)气孔口径(μm)长 宽 气孔面积�占叶面积%阳性植物。 2. 气孔的面积小,蒸腾速率高 气孔一般长约7~30μm ,宽约1~6μm。而进出气孔的CO2和H2O分子的直径分别只有0.46nm和0.54nm,因而气体交换畅通。气孔在叶面上所占面积百分比,一般不到1%,气孔完全张开也只占1%~2%,但气孔的蒸腾量却相当于所在叶面积蒸发量的10%~50%,甚至达到100%。也就是说,经过气孔的蒸腾速率要比同面积的自由水面快几十倍,甚至100倍。这是因为气体通过多孔表面扩散的速率,不与小孔的面积成正比,而与小孔的周长成正比。这就是所谓的小孔扩散律(small pore diffusion law)。这是因为在任何蒸发面上,气体分子除经过表面向外扩散外,还沿边缘向外扩散。在边缘处,扩散分子相互碰撞的机会少,因此扩散速率就比在中间部分的要快些。扩散表面的面积较大时(例如大孔),边缘周长与面积的比值小,扩散主要在表面上进行,经过大孔的扩散速率与孔的面积成正比。然而当扩散表面减小时,边缘周长与面积的比值即增大,经边缘的扩散量就占较大的比例,且孔越小,所占的比例越大,扩散的速度就越快(表2-4)。表2-4 相同条件下水蒸气通过各种小孔的扩散小孔直径(mm)扩散失水(g)相对失水量小孔相对面积小孔相对周长同面积相对失水量。 3. 保卫细胞体积小,膨压变化迅速 保卫细胞比表皮细胞小得多。一片叶子上所有保卫细胞的体积仅为表皮细胞总体积的1/13或更小。因此, 只要有少量溶质进出保卫细胞,便会引起保卫细胞膨压(turgor pressure)迅速变化,调节气孔开闭。 4. 保卫细胞具有多种细胞器 保卫细胞中细胞器的种类比其他表皮细胞中的多,特别是含有较多的叶绿体。保卫细胞中的叶绿体具有光化学活性,能进行光合磷酸化合成ATP,只是缺少固定CO2的关键酶Rubisco,但是保卫细胞的细胞质中含有PEP羧化酶,能进行PEP的羧化反应,其产物为苹果酸(PEP+HCO3-→苹果酸)。叶绿体内含有淀粉体,在白天光照下淀粉会减少,而暗中淀粉则积累。这和正常的光合组织中恰好相反。此外,保卫细胞中还含有异常丰富的线粒体,为叶肉细胞的5~10倍,推测其呼吸旺盛,能为开孔时的离子转运提供能量。 5. 保卫细胞具有不均匀加厚的细胞壁及微纤丝结构 高等植物保卫细胞的细胞壁具有不均匀加厚的特点。例如水稻、小麦等禾本科植物的保卫细胞呈哑铃形(dumbbell shape),中间部分细胞壁厚,两端薄,吸水膨胀时,两端薄壁部分膨大,使气孔张开;棉花、大豆等双子叶植物和大多数单子叶植物的保卫细胞呈肾形(kidney shape),靠气孔口一侧的腹壁厚,背气孔口一侧的背壁薄。并且在保卫细胞壁上有许多以气孔口为中心辐射状径向排列的微纤丝, 它限制了保卫细胞沿短轴方向直径的增大(图2-11)。当保卫细胞吸水,膨压加大时,外壁向外扩展,并通过微纤丝将拉力传递到内壁,将内壁拉离开来,气孔就张开。图 2-11 保卫细胞壁上径向排列的�微纤丝与气孔的运动 实线为气孔开放时,虚线气孔关闭时上图为横切面,下图为表面观 6 .保卫细胞与周围细胞联系紧密 保卫细胞与副卫细胞或邻近细胞间没有胞间连丝,相邻细胞的壁很薄,质膜上存在有ATPase、K+通道,另外在保卫细胞外壁上还有外连丝(ectodesmata)结构,它也可作为物质运输的通道。这些结构有利于保卫细胞同副卫细胞或邻近细胞在短时间内进行H+、K+交换,以快速改变细胞水势。而有胞间连丝的细胞,细胞间的水和溶质分子可经胞间连丝相互扩散,不利于二者间建立渗透势梯度。 另外,保卫细胞能感受内、外信号而调节自身体积,从而控制气孔大小,主宰植物体与外界环境间的水分、气体等交换。因此,保卫细胞可说得上是植物体中奇妙的细胞。够降低叶片表面的温度。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
D
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |