高一数学 难题 在线等 急急急急急!!!!(要有完整的解题步骤)

21.如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L垂直于直线AB。点p时圆O上异于A,B的任意一点,直线PA,PB分别交L与M,N点(2)当点P变化时... 21.如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L垂直于直线AB。点p时圆O上异于A,B的任意一点,直线PA,PB分别交L与M,N点(2)当点P变化时,求证:以MN为直径的圆必过圆O内的一定点

17.已知圆x*2+y*2=4,和圆外一点p(-2,-3),求过点p的圆的切线方程
展开
百度网友9c16c698b
2010-06-16 · 超过15用户采纳过TA的回答
知道答主
回答量:33
采纳率:0%
帮助的人:0
展开全部
21.令圆心(0,0),A(-2,0),B(2,0),L:x=4,P(2cosz,2sinz)
则AP与L交点为M[4,6sinz/(1+cosz)],BP与L的交点为N[4,2sinz/(cosz-1)],MN的中点为Q[4,(2-4cosz)/sinz],半径为绝对值(4-2cosz)/sinz。
则AB为直径的圆内一点D(4-2sqrt(3),0)与Q点距离为等于半径值,即证明MN为
直径的圆必过AB为直径的圆内一点D。
距离计算可用平方相等得到,DQ的距离平方为
12+(2-4cosz)^2/sinz^2=(16-8cosz+4cosz^2)/sinz^2=(4-2cosz)^2/sinz^2

17.切点为A(2cosz,2sinz),用切点到P距离AP平方+半径平方=PO平方,画图可知切点纵坐标非正,用-2sqrt(1-cosz^2)表示
得到两个cosz值-1和5/13,进而可得到切点坐标(-2,0)和(10/13,-24/13)然后可以求得两条切线方程
x=-2,5x-12y-26=0
蕶①壹
2010-06-16
知道答主
回答量:5
采纳率:0%
帮助的人:0
展开全部
17 设切线L的斜率为K=Y+3/X+2
则根据圆心到切线的距离为半径列出方程,解出K即可
打字比较慢啊,还有不懂可以给我发信息
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式