已知{an}是各项都为正数的数列,其前N项和为Sn,且满足2anSn-an^2=1
已知{an}是各项都为正数的数列,其前N项和为Sn,且满足2anSn-an^2=1设bn=2/(4Sn^4-1)求{bn}前n项和为Tn并求证Tn<1...
已知{an}是各项都为正数的数列,其前N项和为Sn,且满足2anSn-an^2=1
设bn=2/(4Sn^4-1)求{bn}前n项和为Tn并求证Tn<1 展开
设bn=2/(4Sn^4-1)求{bn}前n项和为Tn并求证Tn<1 展开
1个回答
展开全部
n=1时,2a1S1-a1²=2S1²-S1²=S1²=1
数列各项均为正,a1>0,S1>0 S1=1
n≥2时,
2[Sn-S(n-1)]Sn-[Sn-S(n-1)]²=1,整理,得
Sn²-S(n-1)²=1
S1²=a1²=1²=1,数列{Sn²}是以1为首项,1为公差的等差数列
Sn²=1+1×(n-1)=n
bn=2/(4Sn⁴-1)=2/(4n²-1)=2/[(2n+1)(2n-1)]=1/(2n-1) -1/(2n+1)=1/(2n-1) -1/[2(n+1)-1]
Tn=b1+b2+...+bn
=1/(2×1-1)-1/(2×2-1)+1/(2×2-1)+1/(2×3-1)+...+1/(2n-1)-1/[2(n+1)-1]
=1 -1/(2n+1)
=2n/(2n+1)
Tn=2n/(2n+1)=(2n+1-1)/(2n+1)=1 -1/(2n+1)
n>0 1/(2n+1)>0 1-1/(2n+1)<1
Tn<1
数列各项均为正,a1>0,S1>0 S1=1
n≥2时,
2[Sn-S(n-1)]Sn-[Sn-S(n-1)]²=1,整理,得
Sn²-S(n-1)²=1
S1²=a1²=1²=1,数列{Sn²}是以1为首项,1为公差的等差数列
Sn²=1+1×(n-1)=n
bn=2/(4Sn⁴-1)=2/(4n²-1)=2/[(2n+1)(2n-1)]=1/(2n-1) -1/(2n+1)=1/(2n-1) -1/[2(n+1)-1]
Tn=b1+b2+...+bn
=1/(2×1-1)-1/(2×2-1)+1/(2×2-1)+1/(2×3-1)+...+1/(2n-1)-1/[2(n+1)-1]
=1 -1/(2n+1)
=2n/(2n+1)
Tn=2n/(2n+1)=(2n+1-1)/(2n+1)=1 -1/(2n+1)
n>0 1/(2n+1)>0 1-1/(2n+1)<1
Tn<1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询