展开全部
答:
f(x)=6cos²x-2√3sinxcosx
=3*(cos2x+1)-√3sin2x
=3cos2x-√3sin2x+3
=2√3*[(√3/2)cos2x-(1/2)sin2x]+3
=2√3cos(2x+π/6)+3
1)
f(x)的最小正周期T=2π/2=π
值域为[3-2√3,3+2√3]
2)
f(B)=2√3cos(2B+π/6)+3=0
cos(2B+π/6)=-√3/2
2B+π/6=5π/6
B=π/3
根据正弦定理:
a/sinA=b/sinB=c/sinC=2R
所以:
a/(4/5)=2/sin(π/3)=c/sinC=2R
解得:a=16√3/15
sinC=sin(A+B)
=sinAcosB+cosAsinB
=(4/5)*(1/2)+(3/5)*(√3/2)
=(4+3√3)/10
f(x)=6cos²x-2√3sinxcosx
=3*(cos2x+1)-√3sin2x
=3cos2x-√3sin2x+3
=2√3*[(√3/2)cos2x-(1/2)sin2x]+3
=2√3cos(2x+π/6)+3
1)
f(x)的最小正周期T=2π/2=π
值域为[3-2√3,3+2√3]
2)
f(B)=2√3cos(2B+π/6)+3=0
cos(2B+π/6)=-√3/2
2B+π/6=5π/6
B=π/3
根据正弦定理:
a/sinA=b/sinB=c/sinC=2R
所以:
a/(4/5)=2/sin(π/3)=c/sinC=2R
解得:a=16√3/15
sinC=sin(A+B)
=sinAcosB+cosAsinB
=(4/5)*(1/2)+(3/5)*(√3/2)
=(4+3√3)/10
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询