高中数学竞赛平面几何证明问题
平面几何问题已知过点O外一点Q作O的两条切线QE,QF和一条割线QDA,线段EF和AD交于点M。求证:AM/DM=AQ/DQ。...
平面几何问题 已知过点O外一点Q作O的两条切线QE,QF和一条割线QDA,线段EF和AD交于点M。
求证:AM/DM=AQ/DQ。 展开
求证:AM/DM=AQ/DQ。 展开
展开全部
本题用解析法相对容易,基本思路如下:
令圆的方程为x^2+y^2=1(单位圆)
令Q点坐标为(m,n),则切点弦EF:mx+ny=1
令A点坐标为(cosα,sinα),则割线AQ:y-n=[(sinα-n)/(cosα-m)]*(x-m)
联立切点弦EF与割线AQ求出M坐标
联立割线AQ与圆O求出Q点坐标
用定比分点公式,比较M分AD的系数和D分AQ的系数。若相等则结论得证
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
展开全部
证明:
更多追问追答
追答
设OQ∩EF=N
切割线定理:
OQ²-R²=EQ²=FQ²=DQ*AQ①
EF⊥OQ,OE⊥EQ,OF⊥FQ
射影定理:
R²=ON*OQ②
∴DQ*AQ=OQ*NQ③
作OG⊥AQ于G
则Rt△OGQ∽Rt△MNQ
∴GQ/NQ=OQ/MQ
∴MQ*GQ=OQ*NQ④
∴(AQ-AM)(DQ+AQ)=2DQ*AQ
即AQ²-AQ*DQ-AM*AQ=AM*DQ
∴AQ*DM=AM*DQ
∴AM/DM=AQ/DQ
简洁解答,能看得懂?如果你能看懂,又怎么会提问?
小子,不思考,只想着不劳而获,很容易智障的,初中生都能解答的题,高中生却没辙,这是正常的IQ吗?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询