求和1*1+2*2+3*3+4*4......n*n过程
求和1*1+2*2+3*3+4*4......n*n过程归纳法怎么来做,过程!!!还有立方差看不懂...
求和1*1+2*2+3*3+4*4......n*n过程
归纳法怎么来做,过程!!!
还有立方差看不懂 展开
归纳法怎么来做,过程!!!
还有立方差看不懂 展开
展开全部
1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6
利用立方差公式
n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]
=n^2+(n-1)^2+n^2-n
=2*n^2+(n-1)^2-n
2^3-1^3=2*2^2+1^2-2
3^3-2^3=2*3^2+2^2-3
4^3-3^3=2*4^2+3^2-4
......
n^3-(n-1)^3=2*n^2+(n-1)^2-n
各等式全相加
n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)
n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)
n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1
n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2
3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1)
=(n/2)(n+1)(2n+1)
1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6
利用立方差公式
n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]
=n^2+(n-1)^2+n^2-n
=2*n^2+(n-1)^2-n
2^3-1^3=2*2^2+1^2-2
3^3-2^3=2*3^2+2^2-3
4^3-3^3=2*4^2+3^2-4
......
n^3-(n-1)^3=2*n^2+(n-1)^2-n
各等式全相加
n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)
n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)
n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1
n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2
3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1)
=(n/2)(n+1)(2n+1)
1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6
展开全部
用的是归纳法吧,1*1+2*2+3*3+4*4......n*n=n*(n+1)*(2n+1)/6,当n=1时成立,假设当n=t时成立,证明当n=t+1时成立就可以了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
2^3-1^3=(2-1)(2^2+2*1+1^2)=2^2+2*1+1^2
3^3-2^3=3^2+3*2+2^2
......
n^3-(n-1)^3=n^2+n(n-1)+(n-1)^2
两边全部加起来
n^3-1=3(1平方+2平方+...+n平方)-n^2-1-(1+2+..+n)
把这个等式整理完了就可以了
3^3-2^3=3^2+3*2+2^2
......
n^3-(n-1)^3=n^2+n(n-1)+(n-1)^2
两边全部加起来
n^3-1=3(1平方+2平方+...+n平方)-n^2-1-(1+2+..+n)
把这个等式整理完了就可以了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这个答案我记得着,
是n(n+1)(2n+1)/6
是n(n+1)(2n+1)/6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询