设数列{an}满足a1=2,an+1-an=3*2^2n-1 ,求an的通项公式
bn=nan,求bn前n项和我觉得an的通项公式是an=3*2^(2n-1)*(n-1)+2但这样第二题根本不能求嘛~~求详解...
bn=nan,求bn前n项和
我觉得an的通项公式是an=3*2^(2n-1)*(n-1)+2 但这样第二题根本不能求嘛~~ 求详解 展开
我觉得an的通项公式是an=3*2^(2n-1)*(n-1)+2 但这样第二题根本不能求嘛~~ 求详解 展开
2个回答
2014-03-19
展开全部
(1)根据题意,有An=(An-An-1) (An-1 - An-2) … (A2 - A1) A1
=3-2^(2n-3) 3-2^(2n-5) … (3-2^3) 2
再用分组求和法:
=3n - 【2^(2n-3) 2^(2n-5) …2^3 2】
=3n-2*(1-4^n)\(1-4)
=2*(1-4^n)\3 3n
即An=-2*(4^n-1)\3 3n
(2)Bn=n*An==-2n*(4^n-1)\3 3n^2
与(1)同理:用分组求和法
=3-2^(2n-3) 3-2^(2n-5) … (3-2^3) 2
再用分组求和法:
=3n - 【2^(2n-3) 2^(2n-5) …2^3 2】
=3n-2*(1-4^n)\(1-4)
=2*(1-4^n)\3 3n
即An=-2*(4^n-1)\3 3n
(2)Bn=n*An==-2n*(4^n-1)\3 3n^2
与(1)同理:用分组求和法
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询