2个回答
展开全部
解
∫x/(x²+2x+2)dx
=1/2∫(2x+2-2)/(x²+2x+2)dx
=1/2∫(2x+2)/(x²+2x+2)dx-∫1/(x²+2x+2)dx
=1/2∫1/(x²+2x+2)d(x²+2x+2)-∫1/[(x+1)²+1]dx
=1/2∫1/udu-∫1/[(x+1)²+1]d(x+1)
=1/2ln|u|-∫1/(u²+1)du
=1/2ln(x²+2x+2)-acrtanu+C
=1/2ln(x²+2x+2)-arctan(x+1)+C
∫x/(x²+2x+2)dx
=1/2∫(2x+2-2)/(x²+2x+2)dx
=1/2∫(2x+2)/(x²+2x+2)dx-∫1/(x²+2x+2)dx
=1/2∫1/(x²+2x+2)d(x²+2x+2)-∫1/[(x+1)²+1]dx
=1/2∫1/udu-∫1/[(x+1)²+1]d(x+1)
=1/2ln|u|-∫1/(u²+1)du
=1/2ln(x²+2x+2)-acrtanu+C
=1/2ln(x²+2x+2)-arctan(x+1)+C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询