勾股定理的6种经典证明是什么啊?(要图文并茂哦)
2个回答
展开全部
三角学里有一个很重要的定理,我国称它为勾股定理,又叫商高定理。因为《周髀算经》提到,商高说过"勾三股四弦五"的话。下面介绍其中的几种证明。 最初的证明是分割型的。设a、b为直角三角形的直角边,c为斜边。考虑下图两个边长都是a+b的正方形A、B。将A分成六部分,将B分成五部分。由于八个小直角三角形是全等的,故从等量中减去等量,便可推出:斜边上的正方形等于两个直角边上的正方形之和。这里B中的四边形是边长为c的正方形是因为,直角三角形三个内角和等于两个直角。如上证明方法称为相减全等证法。B图就是我国《周髀算经》中的“弦图”。 下图是H.珀里加尔(Perigal)在1873年给出的证明,它是一种相加全等证法。其实这种证明是重新发现的,因为这种划分方法,labitibn Qorra(826~901)已经知道。(如:右图)下面的一种证法,是H�6�1E�6�1杜登尼(Dudeney)在1917年给出的。用的也是一种相加全等的证法。 如右图所示,边长为b的正方形的面积加上边长为a的正方形的面积,等于边长为c的正方形面积。 下图的证明方法,据说是L�6�1达�6�1芬奇(da Vinci, 1452~1519)设计的,用的是相减全等的证明法。 欧几里得(Euclid)在他的《原本》第一卷的命题47中,给出了勾股定理的一个极其巧妙的证明,如次页上图。由于图形很美,有人称其为“修士的头巾”,也有人称其为“新娘的轿椅”,实在是有趣。华罗庚教授曾建议将此图发往宇宙,和“外星人”去交流。其证明的梗概是: (AC)2=2△JAB=2△CAD=ADKL。 同理,(BC)2=KEBL 所以 (AC)2+(BC)2=ADKL+KEBL=(BC)2 印度数学家兼天文学家婆什迦罗(Bhaskara,活跃于1150年前后)对勾股定理给出一种奇妙的证明,也是一种分割型的证明。如下图所示,把斜边上的正方形划分为五部分。其中四部分都是与给定的直角三角形全等的三角形;一部分为两直角边之差为边长的小正方形。很容易把这五部分重新拼凑在一起,得到两个直角边上的正方形之和。事实上, 婆什迦罗还给出了下图的一种证法。画出直角三角形斜边上的高,得两对相似三角形,从而有 c/b=b/m, c/a=a/n, cm=b2 cn=a2 两边相加得 a2+b2=c(m+n)=c2 这个证明,在十七世纪又由英国数学家J.沃利斯(Wallis, 1616~1703)重新发现。 有几位美国总统与数学有着微妙联系。G�6�1华盛顿曾经是一个著名的测量员。T�6�1杰弗逊曾大力促进美国高等数学教育。A.林肯是通过研究欧几里得的《原本》来学习逻辑的。更有创造性的是第十七任总统J.A.加菲尔德(Garfield, 1831~1888),他在学生时代对初等数学就具有强烈的兴趣和高超的才能。在1876年,(当时他是众议院议员,五年后当选为美国总统)给出了勾股定理一个漂亮的证明,曾发表于《新英格兰教育杂志》。证明的思路是,利用梯形和直角三角形面积公式。如次页图所示,是由三个直角三角形拼成的直角梯形。用不同公式,求相同的面积得 即 a2+2ab+b2=2ab+c2 a2+b2=c2 这种证法,在中学生学习几何时往往感兴趣。 关于这个定理,有许多巧妙的证法(据说有近400种),下面向同学们介绍几种,它们都是用拼图的方法来证明的。 证法1 如图26-2,在直角三角形ABC的外侧作正方形ABDE,ACFG,BCHK,它们的面积分别为c2,b2和a2。我们只要证明大正方形面积等于两个小正方形面积之和即可。 过C引CM‖BD,交AB于L,连接BC,CE。因为 AB=AE,AC=AG ∠CAE=∠BAG, 所以△ACE≌△AGB SAEML=SACFG (1) 同法可证 SBLMD=SBKHC (2) (1)+(2)得 SABDE=SACFG+SBKHC, 即c2=a2+b2 证法2 如图26-3(赵君卿图),用八个直角三角形ABC拼成一个大的正方形CFGH,它的边长是a+b,在它的内部有一个内接正方形ABED,它的边长为c,由图可知。 SCFGH=SABED+4×SABC, 所以a2+b2=c2 证法3 如图26-4(梅文鼎图)。 在直角△ABC的斜边AB上向外作正方形ABDE,在直角边AC上又作正方形ACGF。可以证明(从略),延长GF必过E;延长CG到K,使GK=BC=a,连结KD,作DH⊥CF于H,则DHCK是边长为a的正方形。设 五边形ACKDE的面积=S 一方面, S=正方形ABDE面积+2倍△ABC面积 =c2+ab (1) 另一方面, S=正方形ACGF面积+正方形DHGK面积 +2倍△ABC面积 =b2+a2+ab. (2) 由(1),(2)得 c2=a2+b2 证法4 如图26-5(项名达图),在直角三角形ABC的斜边上作正方形ABDE,又以直角三角形ABC的两个直角边CA,CB为基础完成一个边长为b的正方形BFGJ(图26-5)。可以证明(从略),GF的延长线必过D。延长AG到K,使GK=a,又作EH⊥GF于H,则EKGH必为边长等于a的正方形。 设五边形EKJBD的面积为S。一方面 S=SABDE+2SABC=c2+ab (1) 另一方面, S=SBEFG+2�6�1S△ABC+SGHFK =b2+ab+a2 由(1),(2) 得出论证 都是用面积来进行验证:一个大的面积等于几个小面积的和。利用同一个面积的不同表示法来得到等式,从而化简得到勾股定理)图见http://ett.edaedu.com/21010000/vcm/0720ggdl.doc 勾股定理是数学上证明方法最多的定理之一——有四百多种证法!但有记载的第一个证明——毕达哥拉斯的证明方法已经失传。目前所能见到的最早的一种证法,属于古希腊数学家欧几里得。他的证法采用演绎推理的形式,记载在数学巨著《几何原本》里。在中国古代的数学家中,最早对勾股定理进行证明的是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用数形结合的方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间的小正方形边长为b-a,则面积为(b-a) 2 。于是便可得如下的式子: 4×(ab/2)+(b-a) 2 =c 2 化简后便可得: a 2 +b 2 =c 2 亦即:c=(a 2 +b 2 ) (1/2) 赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。 以下网址为赵爽的“勾股圆方图”:http://cimg.163.com/catchpic/0/01/01F9D756BE31CE31F761A75CACC1410C.gif 以后的数学家大多继承了这一风格并且有发展, 只是具体图形的分合移补略有不同而已。 例如稍后一点的刘徽在证明勾股定理时也是用以形证数的方法,刘徽用了“出入相补法”即剪贴证明法,他把勾股为边的正方形上的某些区域剪下来(出),移到以弦为边的正方形的空白区域内(入),结果刚好填满,完全用图解法就解决了问题。 以下网址为刘徽的“青朱出入图”:http://cimg.163.com/catchpic/A/A7/A7070D771214459D67A75E8675AA4DCB.gif
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询