18题 初中数学
展开全部
设其中最小的数是x,则其余三个数是x+1,x+2,x+3
则x(x+1)(x+2)(x+3)+1
=(x^2+3x)(x^2+3x+2)+1
设x^2+3x=a
则原式=a(a+2)+1
=a^2+2a+1
=(a+1)^2
=(x^2+3x+1)^2
所以四个连续自然数的积加上1,一定是一个数的完全平方数
则x(x+1)(x+2)(x+3)+1
=(x^2+3x)(x^2+3x+2)+1
设x^2+3x=a
则原式=a(a+2)+1
=a^2+2a+1
=(a+1)^2
=(x^2+3x+1)^2
所以四个连续自然数的积加上1,一定是一个数的完全平方数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
不要设a ,要设就连续的就为(a-1) a a (a+1) (a+2)
这样有平方差公式,拼成完全平方和公式
这样有平方差公式,拼成完全平方和公式
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询