数字电子时钟 20
实现24小时制(23:59:59)和校时功能(时校时和分校时)希望发送到1398514226@qq.com(最好有电路图和报告电路图可以直接在Multisim上打开运行)...
实现24小时制(23:59:59)和校时功能(时校时和分校时)
希望发送到1398514226@qq.com (最好有电路图和报告 电路图可以直接在Multisim上打开运行) 展开
希望发送到1398514226@qq.com (最好有电路图和报告 电路图可以直接在Multisim上打开运行) 展开
1个回答
展开全部
设计原理
计数时钟由模为60的秒计数器模块、模为60的分计数模块、模为24的小时计数器模块、指示灯与报警器的模块、分/小时设定模块及输出显示模块等组成。秒计数器模块的进位输出为分计数器模块的进位输入,分计数器模块的进位输出为小时计数器模块的进位输入。其中秒计数器模块中应有分钟的设定,分计数器模块中应有小时的设定。
内容
设计一个计数时钟,使其具有24小时计数功能。通过“多功能复用按键F1-F12”信号接线组“F1_12(T)”的F9~F12的任意引线插孔可设置小时和分钟的值,并具有整点报时的功能。
电路原理图
模块说明:计数时钟由60秒计数器模块XSECOND、60分计数器模块XMINUTE、24小时计数器模块XHOUR等六个模块构成。秒计数器模块的进位输出为分计数器模块的进位输入,分计数器模块中有小时的设定。通过SW1、SW2、SW3、SW4可设定小时和分钟的值,并具有整点报时的功能。
输入信号:SETMIN为分钟设置信号;SETHOUR为小时设置信号;RESET为全局复位信号;CLK为全局时钟信号;CKDSP为数码管动态扫描信号。
输出信号:SPEAK为蜂鸣器报时信号;LAMP[2..0]为指示灯信号;A~G为数码管七个段位信号;SS[2..0]为数码管段位译码控制信号。
说明与电路连线
指示灯信号LAMP2~LAMP0为独立扩展下载板上CPLD器件的第11、10、9脚,内部已连接并已锁定,无需外接连线。
蜂鸣器报时信号SPEAK为独立扩展下载板CPLD器件的第31脚,内部已连接并已锁定,无需外接连线。
拨码开关SW1~SW7内部已连接并已锁定,无需外接连线。
数码管七个段位信号A~G为独立扩展下载板上CPLD器件的第86、87、88、89、90、92、93脚,应接数码管段位引线接线组KPL_AH,从左到右依次对应的A、B、C、D、E、F、G引线插孔。
数码管段位译码控制信号SS0、SS1、SS2为独立扩展下载板上CPLD器件的第68、69、70脚,为数码管的位选扫描信号,分别接信号接线组DS1-8A(T)的SS0、SS1、SS2引线插孔(即在电源引线插孔组GND孔处)。
复位信号RESET为独立扩展下载板上CPLD器件的第71脚,应接“多功能复用按键F1-F12”信号接线组“F1_12(T)”的F9~F12的任意一个插孔。
小时设置信号SETHOUR为独立扩展下载板CPLD器件的第73脚,应接“多功能复用按键F1-F12”信号接线组“F1_12(T)”的F9~F12的任意一个插孔。
分钟设置信号SETMIN为独立扩展下载板上CPLD器件的第74脚,应接“多功能复用按键F1-F12”信号接线组“F1_12(T)”的F9~F12的任意一个插孔。
时钟信号CLK为独立扩展下载板上CPLD器件的183脚(即GCLK2),应接时钟信号接线组“CLOCK(T)”的“FRQ(21)”引线插孔。
数码管动态扫描信号CKDSP为独立扩展下载板上CPLD器件的79脚(即GCLK1),应接时钟信号接线组“CLOCK(T)”的“FRQ(11)”引线插孔。
参考源程序
library IEEE;
use IEEE.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;
entity xsecond is
port (
clk: in STD_LOGIC;
clkset: in STD_LOGIC;
setmin: in STD_LOGIC;
reset: in STD_LOGIC;
secout: out STD_LOGIC_VECTOR (6 downto 0);
enmin: out STD_LOGIC
);
end xsecond;
architecture xsecond_arch of xsecond is
signal sec : std_logic_vector(6 downto 0);
signal emin : std_logic;
signal sec1 : std_logic;
begin
-- <<enter your statements here>>
process(reset,sec,emin,setmin,clkset)
begin
if reset='0' then
enmin<='0';
secout<="0000000";
sec1<='1';
else
sec1<='0';
secout<=sec;
if clkset='1' and clkset'event then
if setmin='0' then
enmin<='1';
else
enmin<=emin;
end if;
end if;
end if;
end process;
process(clk,sec1)
alias lcount : std_logic_vector(3 downto 0) is sec(3 downto 0);
alias hcount : std_logic_vector(2 downto 0) is sec(6 downto 4);
begin
if sec1='1' then
sec<="0000000";
else
if (clk='1' and clk'event) then
if lcount=9 then
lcount<="0000";
if hcount/=5 then
hcount<=hcount+1;
emin<='0';
else
hcount<="000";
emin<='1';
end if;
else
lcount<=lcount+1;
emin<='0';
end if;
end if;
end if;
end process;
end xsecond_arch;
library IEEE;
use IEEE.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;
entity xminute is
port (
clkmin: in STD_LOGIC;
reset: in STD_LOGIC;
sethour: in STD_LOGIC;
clk: in STD_LOGIC;
minout: out STD_LOGIC_VECTOR (6 downto 0);
enhour: out STD_LOGIC
);
end xminute;
architecture xminute_arch of xminute is
signal min : std_logic_vector(6 downto 0);
signal ehour : std_logic;
signal min1 : std_logic;
begin
-- <<enter your statements here>>
process(reset,clk,sethour,min,ehour)
begin
if reset='0' then
enhour<='0';
minout<="0000000";
min1<='0';
else
min1<='1';
minout<=min;
if clk='1' and clk'event then
if sethour='0' then
enhour<='1';
else
enhour<=ehour;
end if;
end if;
end if;
end process;
process(clkmin,min1)
alias lcountm : std_logic_vector(3 downto 0) is min(3 downto 0);
alias hcountm : std_logic_vector(2 downto 0) is min(6 downto 4);
begin
if min1='0' then
min<="0000000";
else
if (clkmin='1' and clkmin'event) then
if lcountm=9 then
lcountm<="0000";
if hcountm/=5 then
hcountm<=hcountm+1;
ehour<='0';
else
hcountm<="000";
ehour<='1';
end if;
else
lcountm<=lcountm+1;
ehour<='0';
end if;
end if;
end if;
end process;
end xminute_arch;
library IEEE;
use IEEE.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;
entity xhour is
port (
clkhour: in STD_LOGIC;
reset: in STD_LOGIC;
hourout: out STD_LOGIC_VECTOR (5 downto 0)
);
end xhour;
architecture xhour_arch of xhour is
signal hour : std_logic_vector(5 downto 0);
begin
-- <<enter your statements here>>
process(reset,clkhour,hour)
alias lcount : std_logic_vector(3 downto 0) is hour(3 downto 0);
alias hcount : std_logic_vector(1 downto 0) is hour(5 downto 4);
begin
if reset='0' then
hourout<="000000";
hour<="000000";
else
if (clkhour='1' and clkhour'event) then
if lcount=9 then
lcount<="0000";
hcount<=hcount+1;
else
if hour="100011" then
hour<="000000";
else
lcount<=lcount+1;
end if;
end if;
end if;
hourout<=hour;
end if;
end process;
end xhour_arch;
library IEEE;
use IEEE.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;
entity xalert is
port (
clk: in STD_LOGIC;
d_in: in STD_LOGIC_VECTOR (6 downto 0);
speak: out STD_LOGIC;
d_out: out STD_LOGIC_VECTOR (2 downto 0)
);
end xalert;
architecture xalert_arch of xalert is
type state is (s1,s2,s3,s4);
signal next_state,current_state : state;
begin
-- <<enter your statements here>>
process(clk,current_state,d_in)
begin
if d_in/="0000000" then
speak<='0';
next_state<=s1;
current_state<=s1;
d_out<="000";
else
if clk='1' and clk'event then
speak<='1';
current_state<=next_state;
end if;
case current_state is
when s1 =>
d_out<="000";
next_state<=s2;
when s2 =>
d_out<="001";
next_state<=s3;
when s3 =>
d_out<="010";
next_state<=s4;
when s4 =>
d_out<="100";
next_state<=s1;
when others =>
d_out<="000";
null;
end case;
end if;
end process;
end xalert_arch;
library IEEE;
use IEEE.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;
entity xsettime is
port (
hour: in STD_LOGIC_VECTOR (5 downto 0);
min: in STD_LOGIC_VECTOR (6 downto 0);
sec: in STD_LOGIC_VECTOR (6 downto 0);
reset: in STD_LOGIC;
clk: in STD_LOGIC;
sel: out STD_LOGIC_VECTOR (2 downto 0);
d_out: out STD_LOGIC_VECTOR (3 downto 0)
);
end xsettime;
architecture xsettime_arch of xsettime is
signal sel1 : std_logic_vector(2 downto 0);
begin
-- <<enter your statements here>>
process(clk,reset,sel1,hour,min,sec)
begin
if reset='0' then
sel<="000";
d_out<="0000";
sel1<="000";
else
if (clk='1' and clk'event) then
if sel1<5 then
sel1<=sel1+1;
else
sel1<="000";
end if;
end if;
sel<=sel1;
case sel1 is
when "000" =>
d_out(3)<='0';
d_out(2)<='0';
d_out(1)<=hour(5);
d_out(0)<=hour(4);
when "001" =>
d_out<=hour(3 downto 0);
when "010" =>
d_out(3)<='0';
d_out(2)<=min(6);
d_out(1)<=min(5);
d_out(0)<=min(4);
when "011" =>
d_out<=min(3 downto 0);
when "100" =>
d_out(3)<='0';
d_out(2)<=sec(6);
d_out(1)<=sec(5);
d_out(0)<=sec(4);
when "101" =>
d_out<=sec(3 downto 0);
when others =>
null;
end case;
end if;
end process;
end xsettime_arch;
library IEEE;
use IEEE.std_logic_1164.all;
entity xdeled is
port (
d_in: in STD_LOGIC_VECTOR (3 downto 0);
a: out STD_LOGIC;
b: out STD_LOGIC;
c: out STD_LOGIC;
d: out STD_LOGIC;
e: out STD_LOGIC;
f: out STD_LOGIC;
g: out STD_LOGIC
);
end xdeled;
才五分啊,太少了吧
计数时钟由模为60的秒计数器模块、模为60的分计数模块、模为24的小时计数器模块、指示灯与报警器的模块、分/小时设定模块及输出显示模块等组成。秒计数器模块的进位输出为分计数器模块的进位输入,分计数器模块的进位输出为小时计数器模块的进位输入。其中秒计数器模块中应有分钟的设定,分计数器模块中应有小时的设定。
内容
设计一个计数时钟,使其具有24小时计数功能。通过“多功能复用按键F1-F12”信号接线组“F1_12(T)”的F9~F12的任意引线插孔可设置小时和分钟的值,并具有整点报时的功能。
电路原理图
模块说明:计数时钟由60秒计数器模块XSECOND、60分计数器模块XMINUTE、24小时计数器模块XHOUR等六个模块构成。秒计数器模块的进位输出为分计数器模块的进位输入,分计数器模块中有小时的设定。通过SW1、SW2、SW3、SW4可设定小时和分钟的值,并具有整点报时的功能。
输入信号:SETMIN为分钟设置信号;SETHOUR为小时设置信号;RESET为全局复位信号;CLK为全局时钟信号;CKDSP为数码管动态扫描信号。
输出信号:SPEAK为蜂鸣器报时信号;LAMP[2..0]为指示灯信号;A~G为数码管七个段位信号;SS[2..0]为数码管段位译码控制信号。
说明与电路连线
指示灯信号LAMP2~LAMP0为独立扩展下载板上CPLD器件的第11、10、9脚,内部已连接并已锁定,无需外接连线。
蜂鸣器报时信号SPEAK为独立扩展下载板CPLD器件的第31脚,内部已连接并已锁定,无需外接连线。
拨码开关SW1~SW7内部已连接并已锁定,无需外接连线。
数码管七个段位信号A~G为独立扩展下载板上CPLD器件的第86、87、88、89、90、92、93脚,应接数码管段位引线接线组KPL_AH,从左到右依次对应的A、B、C、D、E、F、G引线插孔。
数码管段位译码控制信号SS0、SS1、SS2为独立扩展下载板上CPLD器件的第68、69、70脚,为数码管的位选扫描信号,分别接信号接线组DS1-8A(T)的SS0、SS1、SS2引线插孔(即在电源引线插孔组GND孔处)。
复位信号RESET为独立扩展下载板上CPLD器件的第71脚,应接“多功能复用按键F1-F12”信号接线组“F1_12(T)”的F9~F12的任意一个插孔。
小时设置信号SETHOUR为独立扩展下载板CPLD器件的第73脚,应接“多功能复用按键F1-F12”信号接线组“F1_12(T)”的F9~F12的任意一个插孔。
分钟设置信号SETMIN为独立扩展下载板上CPLD器件的第74脚,应接“多功能复用按键F1-F12”信号接线组“F1_12(T)”的F9~F12的任意一个插孔。
时钟信号CLK为独立扩展下载板上CPLD器件的183脚(即GCLK2),应接时钟信号接线组“CLOCK(T)”的“FRQ(21)”引线插孔。
数码管动态扫描信号CKDSP为独立扩展下载板上CPLD器件的79脚(即GCLK1),应接时钟信号接线组“CLOCK(T)”的“FRQ(11)”引线插孔。
参考源程序
library IEEE;
use IEEE.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;
entity xsecond is
port (
clk: in STD_LOGIC;
clkset: in STD_LOGIC;
setmin: in STD_LOGIC;
reset: in STD_LOGIC;
secout: out STD_LOGIC_VECTOR (6 downto 0);
enmin: out STD_LOGIC
);
end xsecond;
architecture xsecond_arch of xsecond is
signal sec : std_logic_vector(6 downto 0);
signal emin : std_logic;
signal sec1 : std_logic;
begin
-- <<enter your statements here>>
process(reset,sec,emin,setmin,clkset)
begin
if reset='0' then
enmin<='0';
secout<="0000000";
sec1<='1';
else
sec1<='0';
secout<=sec;
if clkset='1' and clkset'event then
if setmin='0' then
enmin<='1';
else
enmin<=emin;
end if;
end if;
end if;
end process;
process(clk,sec1)
alias lcount : std_logic_vector(3 downto 0) is sec(3 downto 0);
alias hcount : std_logic_vector(2 downto 0) is sec(6 downto 4);
begin
if sec1='1' then
sec<="0000000";
else
if (clk='1' and clk'event) then
if lcount=9 then
lcount<="0000";
if hcount/=5 then
hcount<=hcount+1;
emin<='0';
else
hcount<="000";
emin<='1';
end if;
else
lcount<=lcount+1;
emin<='0';
end if;
end if;
end if;
end process;
end xsecond_arch;
library IEEE;
use IEEE.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;
entity xminute is
port (
clkmin: in STD_LOGIC;
reset: in STD_LOGIC;
sethour: in STD_LOGIC;
clk: in STD_LOGIC;
minout: out STD_LOGIC_VECTOR (6 downto 0);
enhour: out STD_LOGIC
);
end xminute;
architecture xminute_arch of xminute is
signal min : std_logic_vector(6 downto 0);
signal ehour : std_logic;
signal min1 : std_logic;
begin
-- <<enter your statements here>>
process(reset,clk,sethour,min,ehour)
begin
if reset='0' then
enhour<='0';
minout<="0000000";
min1<='0';
else
min1<='1';
minout<=min;
if clk='1' and clk'event then
if sethour='0' then
enhour<='1';
else
enhour<=ehour;
end if;
end if;
end if;
end process;
process(clkmin,min1)
alias lcountm : std_logic_vector(3 downto 0) is min(3 downto 0);
alias hcountm : std_logic_vector(2 downto 0) is min(6 downto 4);
begin
if min1='0' then
min<="0000000";
else
if (clkmin='1' and clkmin'event) then
if lcountm=9 then
lcountm<="0000";
if hcountm/=5 then
hcountm<=hcountm+1;
ehour<='0';
else
hcountm<="000";
ehour<='1';
end if;
else
lcountm<=lcountm+1;
ehour<='0';
end if;
end if;
end if;
end process;
end xminute_arch;
library IEEE;
use IEEE.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;
entity xhour is
port (
clkhour: in STD_LOGIC;
reset: in STD_LOGIC;
hourout: out STD_LOGIC_VECTOR (5 downto 0)
);
end xhour;
architecture xhour_arch of xhour is
signal hour : std_logic_vector(5 downto 0);
begin
-- <<enter your statements here>>
process(reset,clkhour,hour)
alias lcount : std_logic_vector(3 downto 0) is hour(3 downto 0);
alias hcount : std_logic_vector(1 downto 0) is hour(5 downto 4);
begin
if reset='0' then
hourout<="000000";
hour<="000000";
else
if (clkhour='1' and clkhour'event) then
if lcount=9 then
lcount<="0000";
hcount<=hcount+1;
else
if hour="100011" then
hour<="000000";
else
lcount<=lcount+1;
end if;
end if;
end if;
hourout<=hour;
end if;
end process;
end xhour_arch;
library IEEE;
use IEEE.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;
entity xalert is
port (
clk: in STD_LOGIC;
d_in: in STD_LOGIC_VECTOR (6 downto 0);
speak: out STD_LOGIC;
d_out: out STD_LOGIC_VECTOR (2 downto 0)
);
end xalert;
architecture xalert_arch of xalert is
type state is (s1,s2,s3,s4);
signal next_state,current_state : state;
begin
-- <<enter your statements here>>
process(clk,current_state,d_in)
begin
if d_in/="0000000" then
speak<='0';
next_state<=s1;
current_state<=s1;
d_out<="000";
else
if clk='1' and clk'event then
speak<='1';
current_state<=next_state;
end if;
case current_state is
when s1 =>
d_out<="000";
next_state<=s2;
when s2 =>
d_out<="001";
next_state<=s3;
when s3 =>
d_out<="010";
next_state<=s4;
when s4 =>
d_out<="100";
next_state<=s1;
when others =>
d_out<="000";
null;
end case;
end if;
end process;
end xalert_arch;
library IEEE;
use IEEE.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;
entity xsettime is
port (
hour: in STD_LOGIC_VECTOR (5 downto 0);
min: in STD_LOGIC_VECTOR (6 downto 0);
sec: in STD_LOGIC_VECTOR (6 downto 0);
reset: in STD_LOGIC;
clk: in STD_LOGIC;
sel: out STD_LOGIC_VECTOR (2 downto 0);
d_out: out STD_LOGIC_VECTOR (3 downto 0)
);
end xsettime;
architecture xsettime_arch of xsettime is
signal sel1 : std_logic_vector(2 downto 0);
begin
-- <<enter your statements here>>
process(clk,reset,sel1,hour,min,sec)
begin
if reset='0' then
sel<="000";
d_out<="0000";
sel1<="000";
else
if (clk='1' and clk'event) then
if sel1<5 then
sel1<=sel1+1;
else
sel1<="000";
end if;
end if;
sel<=sel1;
case sel1 is
when "000" =>
d_out(3)<='0';
d_out(2)<='0';
d_out(1)<=hour(5);
d_out(0)<=hour(4);
when "001" =>
d_out<=hour(3 downto 0);
when "010" =>
d_out(3)<='0';
d_out(2)<=min(6);
d_out(1)<=min(5);
d_out(0)<=min(4);
when "011" =>
d_out<=min(3 downto 0);
when "100" =>
d_out(3)<='0';
d_out(2)<=sec(6);
d_out(1)<=sec(5);
d_out(0)<=sec(4);
when "101" =>
d_out<=sec(3 downto 0);
when others =>
null;
end case;
end if;
end process;
end xsettime_arch;
library IEEE;
use IEEE.std_logic_1164.all;
entity xdeled is
port (
d_in: in STD_LOGIC_VECTOR (3 downto 0);
a: out STD_LOGIC;
b: out STD_LOGIC;
c: out STD_LOGIC;
d: out STD_LOGIC;
e: out STD_LOGIC;
f: out STD_LOGIC;
g: out STD_LOGIC
);
end xdeled;
才五分啊,太少了吧
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询