中,M、N分别是AD,BC的中点,∠AND=90°,连接CM交DN于点O. (1)求证:△ABN≌

中,M、N分别是AD,BC的中点,∠AND=90°,连接CM交DN于点O.(1)求证:△ABN≌△CDM;(2)过点C作CE⊥MN于点E,交DN于点P,若PE=1,∠1=... 中,M、N分别是AD,BC的中点,∠AND=90°,连接CM交DN于点O.
(1)求证:△ABN≌△CDM;
(2)过点C作CE⊥MN于点E,交DN于点P,若PE=1,∠1=∠2,求AN的长.
展开
 我来答
忠鸣惊人
2014-08-07 · TA获得超过4万个赞
知道小有建树答主
回答量:2.1万
采纳率:95%
帮助的人:2448万
展开全部
(1)证明:∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,∠B=∠CDM,
∵M、N分别是AD,BC的中点,
∴BN=DM,
∵在△ABN和△CDM中,
AB=CD
∠B=∠CDM
BN=DM,
∴△ABN≌△CDM(SAS);

(2)解:∵M是AD的中点,∠AND=90°,
∴MN=MD=12‍ AD,
∴∠1=∠MND,
∵AD∥BC,
∴∠1=∠CND,
∵∠1=∠2,
∴∠MND=∠CND=∠2,
∴PN=PC,
∵CE⊥MN,
∴∠CEN=90°,
∴∠2=∠PNE=30°,
∵PE=1,
∴PN=2PE=2,
∴CE=PC+PE=3,
∴CN= CEcos30° =2√3‍ ,
∵∠MNC=60°,CN=MN=MD,
∴△CNM是等边三角形,
∵△ABN≌△CDM,
∴AN=CM=2√3‍ .
记得采纳我的答案哦,祝你学习进步
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式