求有理函数不定积分
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励20(财富值+成长值)
展开全部
先分解部分分式:
1/(1-x³)=a/(1-x)+(bx+c)/(1+x+x²)
1=a(1+x+x²)+(bx+c)(1-x)
令x=1代入得:1=3a, 得:a=1/3
令x=0代入得:1=a+c, 得:c=1-a=2/3
令x=-1代入得:1=a+(-b+c)/2, 得:b=2(a-1)+c=-2/3
所以原式=1/3∫dx/(1-x)+2/3∫(-x+1)/(1+x+x²)dx
=-1/3ln|1-x|-2/3∫[x+1/2-3/2]/[(x+1/2)²+3/4]dx
=-1/3ln|1-x|-2/3∫(x+1/2)dx/[(x+1/2)²+3/4]+∫dx/[(x+1/2)²+3/4]
=-1/3ln|1-x|-1/3∫d(x+1/2)²/[(x+1/2)²+3/4]+2/√3∫d(2x/√3)/[1/3(2x+1)²+1]
=-1/3ln|1-x|-1/3ln(x²+x+1)+2/√3arctan[(2x+1)/√3]+C
1/(1-x³)=a/(1-x)+(bx+c)/(1+x+x²)
1=a(1+x+x²)+(bx+c)(1-x)
令x=1代入得:1=3a, 得:a=1/3
令x=0代入得:1=a+c, 得:c=1-a=2/3
令x=-1代入得:1=a+(-b+c)/2, 得:b=2(a-1)+c=-2/3
所以原式=1/3∫dx/(1-x)+2/3∫(-x+1)/(1+x+x²)dx
=-1/3ln|1-x|-2/3∫[x+1/2-3/2]/[(x+1/2)²+3/4]dx
=-1/3ln|1-x|-2/3∫(x+1/2)dx/[(x+1/2)²+3/4]+∫dx/[(x+1/2)²+3/4]
=-1/3ln|1-x|-1/3∫d(x+1/2)²/[(x+1/2)²+3/4]+2/√3∫d(2x/√3)/[1/3(2x+1)²+1]
=-1/3ln|1-x|-1/3ln(x²+x+1)+2/√3arctan[(2x+1)/√3]+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
先分解部分分式:
1/(1-x³)=a/(1-x)+(bx+c)/(1+x+x²)
1=a(1+x+x²)+(bx+c)(1-x)
令x=1代入得:1=3a, 得:a=1/3
令x=0代入得:1=a+c, 得:c=1-a=2/3
令x=-1代入得:1=a+(-b+c)/2, 得:b=2(a-1)+c=-2/3
所以原式=1/3∫dx/(1-x)+2/3∫(-x+1)/(1+x+x²)dx
=-1/3ln|1-x|-2/3∫[x+1/2-3/2]/[(x+1/2)²+3/4]dx
=-1/3ln|1-x|-2/3∫(x+1/2)dx/[(x+1/2)²+3/4]+∫dx/[(x+1/2)²+3/4]
=-1/3ln|1-x|-1/3∫d(x+1/2)²/[(x+1/2)²+3/4]+2/√3∫d(2x/√3)/[1/3(2x+1)²+1]
=-1/3ln|1-x|-1/3ln(x²+x+1)+2/√3arctan[(2x+1)/√3]+C
1/(1-x³)=a/(1-x)+(bx+c)/(1+x+x²)
1=a(1+x+x²)+(bx+c)(1-x)
令x=1代入得:1=3a, 得:a=1/3
令x=0代入得:1=a+c, 得:c=1-a=2/3
令x=-1代入得:1=a+(-b+c)/2, 得:b=2(a-1)+c=-2/3
所以原式=1/3∫dx/(1-x)+2/3∫(-x+1)/(1+x+x²)dx
=-1/3ln|1-x|-2/3∫[x+1/2-3/2]/[(x+1/2)²+3/4]dx
=-1/3ln|1-x|-2/3∫(x+1/2)dx/[(x+1/2)²+3/4]+∫dx/[(x+1/2)²+3/4]
=-1/3ln|1-x|-1/3∫d(x+1/2)²/[(x+1/2)²+3/4]+2/√3∫d(2x/√3)/[1/3(2x+1)²+1]
=-1/3ln|1-x|-1/3ln(x²+x+1)+2/√3arctan[(2x+1)/√3]+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
先分解部分分式:
1/(1-x³)=a/(1-x)+(bx+c)/(1+x+x²)
1=a(1+x+x²)+(bx+c)(1-x)
令x=1代入得:1=3a, 得:a=1/3
令x=0代入得:1=a+c, 得:c=1-a=2/3
令x=-1代入得:1=a+(-b+c)/2, 得:b=2(a-1)+c=-2/3
所以原式=1/3∫dx/(1-x)+2/3∫(-x+1)/(1+x+x²)dx
=-1/3ln|1-x|-2/3∫[x+1/2-3/2]/[(x+1/2)²+3/4]dx
=-1/3ln|1-x|-2/3∫(x+1/2)dx/[(x+1/2)²+3/4]+∫dx/[(x+1/2)²+3/4]
=-1/3ln|1-x|-1/3∫d(x+1/2)²/[(x+1/2)²+3/4]+2/√3∫d(2x/√3)/[1/3(2x+1)²+1]
=-1/3ln|1-x|-1/3ln(x²+x+1)+2/√3arctan[(2x+1)/√3]+C
1/(1-x³)=a/(1-x)+(bx+c)/(1+x+x²)
1=a(1+x+x²)+(bx+c)(1-x)
令x=1代入得:1=3a, 得:a=1/3
令x=0代入得:1=a+c, 得:c=1-a=2/3
令x=-1代入得:1=a+(-b+c)/2, 得:b=2(a-1)+c=-2/3
所以原式=1/3∫dx/(1-x)+2/3∫(-x+1)/(1+x+x²)dx
=-1/3ln|1-x|-2/3∫[x+1/2-3/2]/[(x+1/2)²+3/4]dx
=-1/3ln|1-x|-2/3∫(x+1/2)dx/[(x+1/2)²+3/4]+∫dx/[(x+1/2)²+3/4]
=-1/3ln|1-x|-1/3∫d(x+1/2)²/[(x+1/2)²+3/4]+2/√3∫d(2x/√3)/[1/3(2x+1)²+1]
=-1/3ln|1-x|-1/3ln(x²+x+1)+2/√3arctan[(2x+1)/√3]+C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询